首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    单细胞分析十八般武艺1:harmony

    Harmony需要输入低维空间的坐标值(embedding),一般使用PCA的降维结果。Harmony导入PCA的降维数据后,会采用soft k-means clustering算法将细胞聚类。常用的聚类算法仅考虑细胞在低维空间的距离,但是soft clustering算法会考虑我们提供的校正因素。这就好比我们的高考加分制度,小明高考成绩本来达不到A大学的录取分数线,但是他有一项省级竞赛一等奖加10分就够线了。同样的道理,细胞c2距离cluster1有点远,本来不能算作cluster1的一份子;但是c2和cluster1的细胞来自不同的数据集,因为我们期望不同的数据集融合,所以破例让它加入cluster1了。聚类之后先计算每个cluster内各个数据集的细胞的中心点,然后根据这些中心点计算各个cluster的中心点。最后通过算法让cluster内的细胞向中心聚集,实在收敛不了的离群细胞就过滤掉。调整之后的数据重复:聚类—计算cluster中心点—收敛细胞—聚类的过程,不断迭代直至聚类效果趋于稳定。

    09

    MySQL · 引擎特性 · MySQL内核对读写分离的支持

    读写分离的场景应用 随着业务增长,数据越来越大,用户对数据的读取需求也随之越来越多,比如各种AP操作,都需要把数据从数据库中读取出来,用户可以通过开通多个只读实例,将读请求业务直接连接到只读实例上。使用RDS云数据库的读写分离功能,用户只需要一个请求地址,业务不需要做任何修改,由RDS自带的读写分离中间件服务来完成读写请求的路由及根据不同的只读实例规格进行不同的负载均衡,同时当只读实例出现故障时能够主动摘除,减少对用户的影响。对用户达到一键开通,一个地址,快速使用。 MySQL内核为读写分离的实现提供了支持,包括通过系统variable设置目标节点,session或者是事务的只读属性,等待/检查指定的事务是否已经apply到只读节点上,以及事务状态的实时动态跟踪等的能力。本文会带领大家一起来看看这些特征。说明一下,本文的内容基于RDS MySQL 5.6与RDS MySQL 5.7。

    04

    KLOOK客路旅行基于Apache Hudi的数据湖实践

    客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票、一日游、特色体验、当地交通与美食预订服务。覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务。KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求。对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100+数据库/实例。RDS直接通过来的数据通过标准化清洗即作为数仓的ODS层,公司之前使用第三方商业工具进行同步,限制为每隔8小时的数据同步,无法满足公司业务对数据时效性的要求,数据团队在进行调研及一系列poc验证后,最后我们选择Debezium+Kafka+Flink+Hudi的ods层pipeline方案,数据秒级入湖,后续数仓可基于近实时的ODS层做更多的业务场景需求。

    05

    做直流逆变中用到的全桥逆变电路测试mos管好坏的方法

    根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

    01

    单细胞转录组高级分析二:转录调控网络分析

    组织内细胞异质性的基础是细胞转录状态的差异,转录状态的特异性又是由转录因子主导的基因调控网络(GRNs)决定并维持稳定的。因此分析单细胞的GRNs有助于深入挖掘细胞异质性背后的生物学意义,并为疾病的诊断、治疗以及发育分化的研究提供有价值的线索。然而单细胞转录组数据具有背景噪音高、基因检出率低和表达矩阵稀疏性的特点,给传统统计学和生物信息学方法推断高质量的GRNs带来了挑战。Single-cell regulatory network inference and clustering (SCENIC)是一种专为单细胞数据开发的GRNs算法,它的创新之处在于引入了转录因子motif序列验证统计学方法推断的基因共表达网络,从而识别高可靠性的由转录因子主导的GRNs。SCENIC相关的文章2017年首先发表于nature methods,2020年又将流程整理后发表于nature protocls。需要深入了解分析原理和流程的朋友可以参考这两篇文章:

    05
    领券