最近群里聊起秒杀和限流,我自己没有做过类似应用,但是工作中遇到过更大的数据和并发。 于是提出了一个简单的模型: var count = rds.inc(key); if(count > 1000) throw "已抢光!" 借助Redis单线程模型,它的inc是安全的,确保每次加一,然后返回加一后的结果。如果原来是234,加一了就是235,返回的一定是235,在此中间,不会有别的请求来打断从而导致返回236或者其它。 其实我们可以理解为inc的业务就是占坑排队,每人占一个坑,拿到排队小票后看看是不是超额了,
Growth Hacking这个词在过去一两年开始迅速从硅谷传播到国内,也诞生了一系列专注于企业数据分析业务的明星初创公司,如GrowingIO,神策数据,诸葛IO等。Growth Hacking简单的来说就是用数据驱动的方式来指导产品的迭代改进,以实现用户的快速增长,可以看看上面几家数据分析公司披露的客户就知道它有多流行了: GrowingIO客户:有赞,豆瓣,36Kr等 神策数据客户:秒拍,AcFun,爱鲜蜂,pp租车等 诸葛IO客户:Enjoy,罗辑思维等 我司的一个主要产品是面向中小诊所的运营S
相信各位在实际的项目中,需要开发打条码模块的也会有不少,很多同行肯定也一直觉得斑马打印机很不错,但是ZPL打印中文字符很麻烦。如果购买字体卡,或者通过CODESOFT,BARTENDER,LABELVIEW等有控件的条码软件打印,成本较高,老板也不容易接受,而自己开发的程序则灵活性更好,方便适应公司的发展需要。下面把自己在实际的运用中写的关于打印中文信息的代码与大家一起分享,如果有写得不好的地方,请各位指出。以下代码是在C#环境中测试通过。先用文本排版好格式(zpl文件),然后通过填充数据打印所需要的内容。
系统的数据,就是公司的生命。哪怕是狗屎,我们也要将它冷冻起来冰封以备后用。垃圾的产品设计就比较让人费解,会时不时从冰柜中将屎取出,想要品尝其中残留的味道。
MySQL 慢日志(slow log)是 MySQL DBA 及其他开发、运维人员需经常关注的一类信息。使用慢日志可找出执行时间较长或未走索引等 SQL 语句,为进行系统调优提供依据。 本文将结合一个线上案例,分析如何正确设置 MySQL 慢日志参数和使用慢日志功能,并介绍下网易云 RDS 对 MySQL 慢日志功能的增强。
业务背景: 后台定时任务刷新Redis的数据到数据库中,有多台机器开启了此定时同步的任务,但是需要其中一台工作,其他的作为备用,提高可用性。使用Redis分布式锁进行限制,拿到锁的机器去执行具体业务,拿不到锁的继续轮询。
MySQL性能压测或者基准测试看起来很简单,使用sysbench,tpcc工具跑跑拿到数据就好,其实压测是一个技术活儿,尤其是涉及到性能对比的测试,因为不同场景/不同厂商的产品的参数设置不同,测试的结果也不一样。如果不阐明具体的参数配置差异,直接给出压测结果可能给其他人带来误导。
本文介绍了在技术社区中,如何从技术角度、业务角度、架构角度、运维角度等多个维度出发,进行社区技术内容的分类、规划、建设、管理、优化,并阐述了在此过程中的技术选型和社区机制建设。同时,本文还分享了基于机器学习和数据挖掘的技术内容管理方法,以及面向知识图谱、智能问答、科技情报等场景的技术实践。
在此基础上,我还写了CellphoneDB的笔记:细胞通讯分析之CellphoneDB初探(一),在这个帖子里简单介绍了CellphoneDB,以及CellphoneDB的环境配制、单样本实战,最后提供了一个可视化的函数cellphoneDB_Dotplot。另外,cellphoneDB似乎是不支持小鼠等其他物种的数据,因此我写了 一行代码完成单细胞数据人鼠基因同源转换,提供了一个函数,一行代码完成人鼠的基因同源转换,然后用转换后的数据走cellphoneDB流程即可。
环境准备 自建MySQL环境主机 主机:iZbp1e*****krn92qrx0Z 内网ip: 10.26.254.217 客户端ecs主机 主机:iZbp1e6*****zkrn92qrwzZ 内网ip: 10.24.236.231 说明 说明:mysql的account的组成为’user’@’host’ 常见问题分析 ERROR 1045 (28000) 现象描述 ERROR 1045 (28000): Access denied for user 'testcon'@'10.24.236.231' (
首先还是要说两句,1 这个帖子不会说是那个云,读者你也不要问是那个云, 2 丢数,我个人认为在云上这是必然的,不是偶然,只是触发概率的问题。(原因很清楚,我说的这个问题,到那个云都一样,越先进的越会有这个问题)
Harmony需要输入低维空间的坐标值(embedding),一般使用PCA的降维结果。Harmony导入PCA的降维数据后,会采用soft k-means clustering算法将细胞聚类。常用的聚类算法仅考虑细胞在低维空间的距离,但是soft clustering算法会考虑我们提供的校正因素。这就好比我们的高考加分制度,小明高考成绩本来达不到A大学的录取分数线,但是他有一项省级竞赛一等奖加10分就够线了。同样的道理,细胞c2距离cluster1有点远,本来不能算作cluster1的一份子;但是c2和cluster1的细胞来自不同的数据集,因为我们期望不同的数据集融合,所以破例让它加入cluster1了。聚类之后先计算每个cluster内各个数据集的细胞的中心点,然后根据这些中心点计算各个cluster的中心点。最后通过算法让cluster内的细胞向中心聚集,实在收敛不了的离群细胞就过滤掉。调整之后的数据重复:聚类—计算cluster中心点—收敛细胞—聚类的过程,不断迭代直至聚类效果趋于稳定。
一、层次维度简介 大多数维度都具有一个或多个层次。例如,示例数据仓库中的日期维度就有一个四级层次:年、季度、月和日。这些级别用date_dim表里的列表示。日期维度是一个单路径层次,因
在云计算普及、云厂商林立的时代背景下,顺应云化趋势是一个明智的选择。沃趣科技基于十年技术积累,以及对数据库生态领域的深刻洞见,联合旗下多云数通公司,正式推出面向公有云的RDS服务 —— Squids。帮助用户数据库选好云,上好云,用好云。
R怎么读入表格数据最快? R中有6个常用数据读取函数: utils::read.csv: 默认使用的读入方式 (read.table) readr::read_csv: readr包中的读入函数 (RStudio中默认也包含了这一方式) data.table::fread: 来自data.table包 base::load: 加载rda文件 base::readRDS: 读取二进制数据 feather::read_feather: 一种新的feather格式的二进制数据 生成测试数据 set.seed(12
今天上班的时候接收到了一个业务方的反馈,说是一个数据库在删除表的时候报错了,我让他截给我日志看看,日志中的内容如下:
不论是一对多直播还是一对一直播app制作,关于服务器的配置和成本是大多数运营商比较关心和头疼的问题。一般来说,在直播app运营的每个阶段,所安排的服务器台数和负责的功能都是不一样的。那么如何在有限的成本中搭配出高效的服务器模组?针对这个问题,小编今天就给各位初入直播行业的运营商说明一下。
购买整卡GPU服务器(不要切分卡,比如GN7vw,不要1/8、1/4、1/2卡,要整卡,整卡的显卡驱动比较自由),购买时选Server2019纯净版系统
距离上次被DDOS攻击已经有10天左右的时间,距离上上次已经记不起具体那一天了,每一次都这么不了了之。然而近期一次相对持久的攻击,我觉得有必要静下心来,分享一下被黑的那段经历。
读写分离的场景应用 随着业务增长,数据越来越大,用户对数据的读取需求也随之越来越多,比如各种AP操作,都需要把数据从数据库中读取出来,用户可以通过开通多个只读实例,将读请求业务直接连接到只读实例上。使用RDS云数据库的读写分离功能,用户只需要一个请求地址,业务不需要做任何修改,由RDS自带的读写分离中间件服务来完成读写请求的路由及根据不同的只读实例规格进行不同的负载均衡,同时当只读实例出现故障时能够主动摘除,减少对用户的影响。对用户达到一键开通,一个地址,快速使用。 MySQL内核为读写分离的实现提供了支持,包括通过系统variable设置目标节点,session或者是事务的只读属性,等待/检查指定的事务是否已经apply到只读节点上,以及事务状态的实时动态跟踪等的能力。本文会带领大家一起来看看这些特征。说明一下,本文的内容基于RDS MySQL 5.6与RDS MySQL 5.7。
沃趣科技 熊中哲·联合创始人/产品研发团队总监 前文我们介绍了基于 Kubernetes 实现的下一代私有 RDS. 其中, 调度策略是具体实现时至关重要的一环, 它关系到 RDS 集群的服务质量和部
客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票、一日游、特色体验、当地交通与美食预订服务。覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务。KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求。对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100+数据库/实例。RDS直接通过来的数据通过标准化清洗即作为数仓的ODS层,公司之前使用第三方商业工具进行同步,限制为每隔8小时的数据同步,无法满足公司业务对数据时效性的要求,数据团队在进行调研及一系列poc验证后,最后我们选择Debezium+Kafka+Flink+Hudi的ods层pipeline方案,数据秒级入湖,后续数仓可基于近实时的ODS层做更多的业务场景需求。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。因MOS管分为N沟道与P沟道,所以开关电路也主要分为两种。
Elasticsearch 的数据备份是通过快照机制实现的。为了完成集群的快照,需要依赖一个共享存储系统,即所有节点需要挂载到共享存储的同一个目录,并且每个节点对此目录需有读写权限,最初我们使用 NAS(即 NFS)来实现备份,这个方案也已经稳定运行多年。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
一般情况下我们需要分析的数据都是存储在文件中,那么利用 R 分析数据的第一步就是将输入读入 R 语言。如果分析的数据是记录在纸质载体上,还需要将数据手动录入,然后保存为一个文件。在 R 中分析文件一般是文件文件,通常是以逗号分隔的 csv 文件,如果数据本身包含逗号,就需要使用制表符 tab 分隔的文件。有些情况下还有需要处理其他统计软件生成的文件,例如 Excel 生成的 xlsx 格式文件等。R 可以很方便地读写多种格式文件。
上一次说到通过PAM50基因进行乳腺癌分型,利用的就是自己的表达矩阵和PAM50基因比较,看表达量变化进行分类。细胞周期分类和PAM50类似,也是利用基因来推断G、S、M期(https://en.wikipedia.org/wiki/Cell_cycle)
单细胞代码解析-妇科癌症单细胞转录组及染色质可及性分析1:https://cloud.tencent.com/developer/article/2055573
PDF:连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
导语:推荐系统中个性化推荐最为复杂,个性化推荐涉计到很多基础技术:用户画像,用户曝光记录,推荐算法策略等等,其中用户画像和用户曝光记录的设计好坏直接影响推荐系统的性能和效率,布隆过滤器应用到用户曝光记录,在存储和判断方面,有着非常明显的优势。本文结合自己的实践经验,简单介绍一下如何设计一个优雅的用户曝光记录功能。
买了一台数据库,最大连接数的参数是 4000,看起来很棒!但是 cpu 和内存并不咋好!是 2c4g的超低配制。
HBase自带的Web UI上Region单位的 Read Request Count/Write Request Count,不过这只是个累计值。
本文介绍了数据仓库及其在技术社区中的应用,并重点讲解了数据仓库中的事实表和维度表的设计。在数据仓库中,通过将事实表与维度表关联,可以灵活地根据维度表中的属性进行查询。同时,通过在事实表和维度表之间建立关联,可以实现灵活的维度与度量之间的转换。最后,本文讲解了如何设计数据仓库以满足技术社区的需求,并提供了相应的示例。
根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
3、合理的输出(构建的思路去设计:不加Rb,发射结烧掉,不加Rc,输出端口负载上的电压就是VCC)
一、迟到的事实简介 数据仓库通常建立于一种理想的假设情况下,这就是数据仓库的度量(事实记录)与度量的环境(维度记录)同时出现在数据仓库中。当同时拥有事实记录和正确的当前维度行时,就能够
由于基因组改变引起的分子损伤的特异性,我们可以生成特征改变谱,称为“signature”。
云产品 API 是用于与云产品进行通信的编程接口,允许开发者编写代码来控制云资源。通过使用 API,开发者可以实现自动化和标准化的操作,从而提高效率和降低错误率。此外,云产品 API 还可以提供对云服务的扩展和集成,使开发者能够将云服务与自有其他应用系统集成,构建更加丰富和复杂的应用程序。通过使用 API,可以提高开发者的生产力和创新能力,帮助他们更快地开发和部署云应用,从而更好地满足业务需求,实现真正的"DevOps"。
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
通过了解系统是公司很多年前的一个老系统,面向美国用户的,数据库是阿里云的rds 所在区为美国弗吉尼亚mysql版本为5.6,产品在update操作时候字段名称写错了,把一个字段值覆盖掉了
OLAP 是一个很卷的赛道,创业公司也众多。在本文中,笔者基于 10+ 年的大数据与数据仓库的工作经验,就目前的主流趋势:离在线一体化、引擎一体化、云原生化等写一些思考,抛砖引玉,希望能与各位共同探讨。
什么是DataV数据可视化 相比于传统图表与数据仪表盘,如今的数据可视化致力于用更生动、友好的形式,即时呈现隐藏在瞬息万变且庞杂数据背后的业务洞察。无论在零售、物流、电力、水利、环保、还是交通领域,通过交互式实时数据可视化视屏墙来帮助业务人员发现、诊断业务问题,越来越成为大数据解决方案中不可或缺的一环。
对单细胞数据进行亚群注释之后,我们往往想比较某亚群,例如CD8Tex,是倾向于分布在实验组还是对照组,例如癌组织,癌旁组织,转移癌组织,淋巴组织?这时候有很多策略去做这种多组间的比较。
最近在实现 MetaProtocol 时阅读了 Envoy 相关的一些源码。这里将一些重要流程的时序图记录下来,以备后续查看。
某游戏公司开发了个游戏APP,该公司在APP中会发布一些游戏场景、游戏角色、装备、精美皮肤等内容,玩家在线娱乐,产生充值购买等行为。 业务的构建涉及到几个端:
组织内细胞异质性的基础是细胞转录状态的差异,转录状态的特异性又是由转录因子主导的基因调控网络(GRNs)决定并维持稳定的。因此分析单细胞的GRNs有助于深入挖掘细胞异质性背后的生物学意义,并为疾病的诊断、治疗以及发育分化的研究提供有价值的线索。然而单细胞转录组数据具有背景噪音高、基因检出率低和表达矩阵稀疏性的特点,给传统统计学和生物信息学方法推断高质量的GRNs带来了挑战。Single-cell regulatory network inference and clustering (SCENIC)是一种专为单细胞数据开发的GRNs算法,它的创新之处在于引入了转录因子motif序列验证统计学方法推断的基因共表达网络,从而识别高可靠性的由转录因子主导的GRNs。SCENIC相关的文章2017年首先发表于nature methods,2020年又将流程整理后发表于nature protocls。需要深入了解分析原理和流程的朋友可以参考这两篇文章:
单个物理维度可以被事实表多次引用,每个引用连接逻辑上存在差异的角色维度。例如,事实表可以有多个日期,每个日期通过外键引用不同的日期维度,原则上每个外键表示不同的日期维度视图,这样引用具
坏处是phase点电压要等于输入电压需要更多的能量,所以在每次开关时都要消耗 更多的能量,这样会降低电源转换效率。
4.域名--->CDN--->负载均衡--->云服务器ECS+数据库RDS(主从)+缓存Redis
领取专属 10元无门槛券
手把手带您无忧上云