网络安全是一门关注计算机系统和网络安全的专业学科。其首要任务是维护信息系统的核心价值,包括机密性、完整性和可用性,以对抗未经授权的访问、破坏、篡改或泄露的威胁。
* 本文原创作者:维一零,本文属FreeBuf原创奖励计划,未经许可禁止转载 在今年的黑帽大会上,国外的一个安全研究员展示了如何通过Windows的数字签名bypass对恶意程序代码的检测。 下载大会的该演讲的ppt大概看了一下,报告分为两部分,第一部分展示数字签名的的校验“漏洞”,第二部分展示该作者自己研究实现的一个pe程序加载器,用来配合第一部分的“漏洞“bypass杀毒软件对恶意程序的检测。 本文重点在于第一部分的这个数字签名校验”漏洞“,通过回顾分析数字签名的校验来阐述这个”漏洞“的原理。 数字签名
关于iOS应用签名我想一起探讨一下它的原理.首先我们需要了解一个东西,叫做 数字签名 数字签名(digitally signed) 名词解释:为什么用签名这个词.因为老外喜欢用支票,支票上面的签名能够
数字签名,就是通过在数据单元上附加数据,或对数据单元进行秘密变换,从而使接收者可以确认数据来源和完整性。简单说来,数字签名是防止他人对传输的文件进行破坏,以及确定发信人的身份的手段。 目前的数字签名是建立在公共密钥体制基础上,它是公用密钥加密技术的另一类应用。它的主要方式是:报文的发送方从报文文本中生成一个128位的散列值(又称报文摘要,数字指纹)。发送方用自己的私人密钥对这个散列值进行加密来形成发送方的数字签名。然后,这个数字签名将作为报文的附件和报文一起发送给报文的接收方。报文的接收方首先从接收到的原
数字签名,就是通过在数据单元上附加数据,或对数据单元进行秘密变换,从而使接收者可以确认数据来源和完整性。简单说来,数字签名是防止他人对传输的文件进行破坏,以及确定发信人的身份的手段。
对称密钥算法和非对称密钥算法是两种常见的加密技术,它们在加密和解密数据时采用不同的方法。
关于iOS应用签名我想一起探讨一下它的原理.首先我们需要了解一个东西,叫做数字签名
作者前文介绍了宏病毒相关知识,它仍然活跃于各个APT攻击样本中,具体内容包括宏病毒基础原理、防御措施、自发邮件及APT28样本分析。本文将详细介绍什么是数字签名,并采用Signtool工具对EXE文件进行签名,后续深入分析数字签名的格式及PE病毒内容。这些基础性知识不仅和系统安全相关,同样与我们身边常用的软件、文档、操作系统紧密联系,希望这些知识对您有所帮助,更希望大家提高安全意识,安全保障任重道远。本文参考了参考文献中的文章,并结合自己的经验和实践进行撰写,也推荐大家阅读参考文献。
数字签名技术是信息安全领域内的一项核心技术,它允许数据的接收者验证数据来源的真实性和数据在传输过程中是否被篡改。数字签名基于公钥密码学原理,使用发送者的私钥进行签名,而接收者则用相应的公钥进行验证。
数字签名它是基于非对称密钥加密技术与数字摘要算法技术的应用,它是一个包含电子文件信息以及发送者身份,并能够鉴别发送者身份以及发送信息是否被篡改的一段数字串。
在当代的数字化社会中,系统安全是不能被忽视的一个环节。作为软件开发者或架构师,我们需要了解各种安全机制,以确保我们开发的应用程序能在一个安全的环境中运行。其中,软件签名技术是一个非常重要的环节。本文将深入探讨软件签名技术的基础概念、工作原理以及它在系统安全中的重要性。
RSA 签名算法的全称是 SHA1WithRSA:它使用的消息摘要算法是 SHA1,它使用的非对称加密算法是 RSA。RSA 签名算法对 RSA 密钥的长度不限制。推荐使用 2048 位以上(256 字节)
在数字通信时代,文件安全和数据保护是任何组织或个人都必须面对的挑战。GNU Privacy Guard(GPG)是一种广泛使用的加密软件,提供了数据加密、签名和身份验证等功能,以确保电子数据的安全和完整性。本文将深入探讨GPG的核心功能和操作原理,解释它是如何通过数字签名技术来防止数据篡改,并探讨在何种情况下直接对文件进行签名。
关于什么是公钥和私钥,网上有一篇很经典的文章:http://www.youdzone.com/signature.html
RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)
马上就要过年回村里了,村里没有wifi,没有4G,没有流量,更加重要的是过几天电脑就得卖掉换车票了,得赶紧写几篇文章。 数据安全的相关技术在现在愈来愈变得重要,因为人们对
数字签名(又称公钥数字签名、电子签章等)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证。
Java应用接口安全性问题可能来源于多个方面,包括但不限于数据加密、身份验证、访问控制、输入验证等。下面我会对这些问题进行详细分析,并提供相应的解决方案和最佳实践。
信息安全技术是一种涉及保护计算机系统、网络和数据不受未经授权的访问、使用、泄露或破坏的技术和方法。信息安全技术的主要目标是确保信息的机密性、完整性和可用性,防止信息在传输和存储过程中遭到未经授权的访问或修改。
本篇文章虽然是介绍iOS开发中ipa包的签名原理。但因为签名涉及到密码学中的概念。在了解签名之前,我们需要明确一些概念。密码学中,根据加解密密钥的不同,通常把加密方式分为对称密码(对称加密)和公钥密码(非对称加密)。常见加密算法有:DES、3DES、DESX、AES、RSA、ECC。其中RSA、ECC是非对称加密算法。以下是一些必要的概念。
虽然很久以前就了解了数字签名,但之前突然被一个非程序员朋友问起什么是数字签名时,依然解释得很费力。近日找图片素材看到Peggy_Marco大神的众多人物形象图时,有了用图解说数字签名的想法,于是决定借用大神的人物形象图,尝试用图解释一下说什么是数字签名。
前言 相信很多同学对于iOS的真机调试,App的打包发布等过程中的各种证书、Provisioning Profile、 CertificateSigningRequest、p12的概念是模糊的,导致在实际操作过程中也很容易出错。好在Xcode8.0出现了Automatically manage signing,让我们在这步操作中减少了难度。虽然说我们在Xcode8.0之后可以选择让Xcode自动管理了,但是我们还是应该知道App签名的原理。本文尝试从原理出发,一步步推出为什么会有这么多概念,希望能有助于理解
Android APK 签名原理涉及到密码学的加密算法、数字签名、数字证书等基础知识,这里做个总结记录。
加密哈希的作用是创建一个唯一的指纹或标识,用于表示输入数据。无论输入数据有多大或多小,哈希函数都会生成相同长度的哈希值。这意味着即使输入数据发生微小的改变,生成的哈希值也会完全不同。
0. 前言 最近参与一个基于 BitTorrent 协议的 Docker 镜像分发加速插件的开发,主要参与补充 https 协议 学习了 TLS 相关知识,下面对之前的学习做一下简单总结 参考文献:TLS完全指南系列文章 1. 基本原理 TLS 依赖两种加密技术: 对称加密(symmetric encryption) 非对称加密(asymmetric encryption) 1.1 对称加密 加密方和解密方共享同一个秘钥 K: 加密:C = E(M, K) 解密:M = D(C, K) 攻击者且听到 K
一、加密 数据加密技术从技术上的实现分为在软件和硬件两方面。按作用不同,数据加密技术主要分为数据传输、数据存储、数据完整性的鉴别以及密钥管理技术这四种。 在网络应用中一般采取两种加密形式:对称密钥和公开密钥,采用何种加密算法则要结合具体应用环境和系统,而不能简单地根据其加密强度来作出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性,以及投入产出分析都应在实际环境中具体考虑。 对于对称密钥加密。其常见加密标准为DES等,当使用DES时,用户和接受方采用64位密钥对报文加密和解密,当对安全性有特殊要求时,则要采取 IDEA和三重DES等。作为传统企业网络广泛应用的加密技术,秘密密钥效率高,它采用KDC来集中管理和分发密钥并以此为基础验证身份,但是并不适合 Internet环境。 在Internet中使用更多的是公钥系统。即公开密钥加密,它的加密密钥和解密密钥是不同的。一般对于每 个用户生成一对密钥后,将其中一个作为公钥公开,另外一个则作为私钥由属主保存。常用的公钥加密算法是RSA算法,加密强度很高。具体作法是将数字签名和 数据加密结合起来。发送方在发送数据时必须加上数据签名,做法是用自己的私钥加密一段与发送数据相关的数据作为数字签名,然后与发送数据一起用接收方密钥 加密。当这些密文被接收方收到后,接收方用自己的私钥将密文解密得到发送的数据和发送方的数字签名,然后,用发布方公布的公钥对数字签名进行解密,如果成 功,则确定是由发送方发出的。数字签名每次还与被传送的数据和时间等因素有关。由于加密强度高,而且并不要求通信双方事先要建立某种信任关系或共享某种秘 密,因此十分适合Internet网上使用。 下面介绍几种最常见的加密体制的技术实现: 1.常规密钥密码体制 所谓常规密钥密码体制,即加密密钥与解密密钥是相同的。 在早期的常规密钥密码体制中,典型的有代替密码,其原理可以用一个例子来说明: 将字母a,b,c,d,…,w,x,y,z的自然顺序保持不变,但使之与D,E,F,G,…,Z,A,B,C分别对应(即相差3个字符)。若明文为student则对应的密文为VWXGHQW(此时密钥为3)。 由于英文字母中各字母出现的频度早已有人进行过统计,所以根据字母频度表可以很容易对这种代替密码进行破译。 2.数据加密标准DES DES算法原是IBM公司为保护产品的机密于1971年至1972年研制成功的,后被美国国家标准局和国家安全局选为数据加密标准,并于1977年颁布使用。ISO也已将DES作为数据加密标准。 DES对64位二进制数据加密,产生64位密文数据。使用的密钥为64位,实际密钥长度为56位(有8位用于奇偶校验)。解密时的过程和加密时相似,但密钥的顺序正好相反。 DES的保密性仅取决于对密钥的保密,而算法是公开的。DES内部的复杂结构是至今没有找到捷径破译方法的根本原因。现在DES可由软件和硬件实现。美国AT&T首先用LSI芯片实现了DES的全部工作模式,该产品称为数据加密处理机DEP。 3.公开密钥密码体制 公开密钥(public key)密码体制出现于1976年。它最主要的特点就是加密和解密使用不同的密钥,每个用户保存着一对密钥 ? 公开密钥PK和秘密密钥SK,因此,这种体制又称为双钥或非对称密钥密码体制。 在这种体制中,PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。公开密钥算法的特点如下: 1、用加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X 2、加密密钥不能用来解密,即DPK(EPK(X))≠X 3、在计算机上可以容易地产生成对的PK和SK。 4、从已知的PK实际上不可能推导出SK。 5、加密和解密的运算可以对调,即:EPK(DSK(X))=X 在公开密钥密码体制中,最有名的一种是RSA体制。它已被ISO/TC97的数据加密技术分委员会SC20推荐为公开密钥数据加密标准。 二、数字签名 数字签名技术是实现交易安全的核心技术之一,它的实现基础就是加密技术。在这里,我们介绍数字签名的基本原理。 以往的书信或文件是根据亲笔签名或印章来证明其真实性的。但在计算机网络中传送的报文又如何盖章呢?这就是数字签名所要解决的问题。数字签名必须保证以下几点: 接收者能够核实发送者对报文的签名;发送者事后不能抵赖对报文的签名;接收者不能伪造对报文的签名。 现在已有多种实现各种数字签名的方法,但采用公开密钥算法要比常规算法更容易实现。下面就
数字证书是一个由可信的第三方发出的,用来证明公钥拥有者的信息以公钥的电子文件。
我相信大家面试的时候对于 HTTPS 这个问题一定不会陌生,可能你只能简单的说一下与 HTTP 的区别,但是真正的原理是否很清楚呢?他到底如何安全?这一篇让我们用大白话来揭开 HTTPS 的神秘面纱吧!
作者前文介绍了什么是数字签名,并采用Signtool工具对EXE文件进行签名,后续深入分析数字签名的格式及PE病毒内容。这篇文章将详细解析数字签名,采用Signtool工具对EXE文件进行签名,接着利用Asn1View、PEVie、010Editor等工具进行数据提取和分析,这是全网非常新的一篇文章,希望对您有所帮助。这些基础性知识不仅和系统安全相关,同样与我们身边常用的软件、文档、操作系统紧密联系,希望这些知识对您有所帮助,更希望大家提高安全意识,安全保障任重道远。本文参考了参考文献中的文章,并结合自己的经验和实践进行撰写,也推荐大家阅读参考文献。
本文来自 微信读书 团队博客:http://wereadteam.github.io/ 导语 iOS 签名机制挺复杂,各种证书,Provisioning Profile,entitlements,CertificateSigningRequest,p12,AppID,概念一堆,也很容易出错,本文尝试从原理出发,一步步推出为什么会有这么多概念,希望能有助于理解 iOS App 签名的原理和流程。 目的 先来看看苹果的签名机制是为了做什么。在 iOS 出来之前,在主流操作系统(Mac/Windows/Linux
最近几年经常能听到IM应用的开发者讨论国产信创方面的技术问题,在某些场景下,国密算法是硬性要求,所以学习一下国密算法还是很有必要的。
国密就是一个口头上简称,官方名称是国家商用密码,使用拼音缩写 SM,它是用于商用的、不涉及国家秘密的密码技术。
当我们谈到加签(签名)和验签(验证签名)时,通常是在信息安全领域中,特别是在数据传输和通信方面。这两个概念主要用于确保数据的完整性和身份验证,以防止数据被篡改或冒充。
该文介绍了如何使用Java实现数字签名,包括DSA、RSA和ECDSA算法。文章还介绍了Java中的KeyPair和Signature类,以及如何使用这些类来实现数字签名和验证。
提起皮卡丘,小编心里一直有个怨念,比小编至今无法在国内玩上 Pokemon Go 的怨念还深,那就是口袋妖怪的卡牌,尤其是那张喷火龙!
本篇来介绍计算机领域的信息安全以及加密相关基础知识,这些在嵌入式软件开发中也同样会用到。
公共密钥密码体制于 1976 年提出,其原理是加密密钥和解密密钥分离。密码体制的基本模型如图 所示。
在《上篇》中,我们谈到了常用的认证方式:用户名/密码认证和Windows认证。在下篇中,我们着重来介绍另外一种重要的凭证类型:X.509证书,以及针对X.509证书的认证方式。不过为了让读者能够真正地全面地了解X.509证书,我们需要先了解一些关于非对称密码学的背景知识。 目录 一、非对称密码学(Asymmetric Cryptography) 消息加密(Encryption) 数字签名(Digital Signature) 二、数字证书
网络通信中最重要的就是数据部分,而保证数据的正确安全传输,就要牵扯到数据的编码和数据的加密问题,今天的三问就是关于编码和加密:
摘要算法:通过输入任意长度内容柔和而产生固定长度的伪随机输出内容的算法,它主要 的作用是用来验证数据的完整性
1.支持按进程、服务、驱动、启动项、计划任务等类型进行分类。 2.支持查看项目名、文件路径、数字签名、文件说明、产品名称等信息。 3.支持查看启动路径以及启动参数。 4.支持一键快速处理流氓软件相关进程服务。 5.支持删除文件关联、输入法等
本文转载自「阿里技术」。这篇文章比以前见到的更丰满,分享给大家看看!如果喜欢请关注。
对称加密算法使用的加密和解密的密钥一样,比如用秘钥123加密就需要用123解密。实际中秘钥都是普通数据在互联网传输的,这样秘钥可能会被中间人截取,导致加密被破解。其过程如下:
这是 2020 年一个平平无奇的周末,小北在家里刷着 B 站,看着喜欢的 up 主视频。
HTTP是明文传输的。在一个广播域内(连在同一个交换机的所有设备),所有的设备都是可以收到传输的数据(只是链路层协议会检查mac地址是否为自己,不是就丢弃)。
领取专属 10元无门槛券
手把手带您无忧上云