本文将详细介绍数据仓库维度建模技术,并重点讨论三种基于ER建模/关系建模/维度建模的数据仓库总体建模体系:规范化数据仓库,维度建模数据仓库,以及独立数据集市。...维度建模的基本概念 维度建模(dimensional modeling)是专门用于分析型数据库、数据仓库、数据集市建模的方法。...数据仓库建模体系之规范化数据仓库 所谓"数据仓库建模体系",指的是数据仓库从无到有的一整套建模方法。最常见的三种数据仓库建模体系分别为:规范化数据仓库,维度建模数据仓库,独立数据集市。...如果这种一致维度不满足某些数据分析要求,自然也可在数据仓库之上继续构建新的数据集市。...数据仓库建模体系之独立数据集市 独立数据集市的建模体系是让公司的各个组织自己创建并完成ETL,自己维护自己的数据集市。其总体架构如下图所示: ?
数据湖、数据仓库、数据集市,这三个概念都是干什么的,有什么区别呢?这边文章可以为你解释下他们的异同。...关于数据湖和数据仓库的区别可以参考上一篇文章:数据分析师应该了解的数据湖 数据集市 简单来说,数据集市是数据仓库的一个子部分,专门为特定部门/业务功能设计和构建的。...高性能:由于每个数据集市仅用于特定部门,因此通过数据集市性能负载在部门内部得到了很好的管理,不会影响其他集市的分析工作。 数据集市类型 从属数据集市,从现有数据仓库构建从属数据集市。...数据从内部或外部数据源中获取,经过精炼,然后加载到数据集市,直到业务分析结束为止。 混合数据集市,混合数据集市集成了来自当前数据仓库和其他运营源系统的数据。...它结合自下而上方法,帮助企业集成数据集市。 数据集市和数据仓库的区别 ? 所以,对于大型企业来说,数据湖,数据仓库,数据集市都是共存的,针对不同的用户和部分使用。
# 实时数仓项目-数据采集与ODS层 配置canal实时采集mysql数据 一、mysql开启binlog 二、安装配置canal采集数据到kafka 三、启动kafka消费者验证 ODS层数据处理导入...hbase 一、flink采集kafka数据 配置canal实时采集mysql数据 一、mysql开启binlog 修改mysql的配置文件(linux:/etc/my.cnf,Windows:\my.ini...) log-bin=mysql-bin # 开期binlog binlog-format=ROW #选择ROW模式 binglog-do-db=dwshow #dwshow是数据库的名称 binlog-format...可以选择statement,row,mixed,区别在于: 模式 区别 statement 记录写操作的语句,节省空间,但可能造成数据不一致 row 记录每次操作后每行记录的变化,占用空间较大 mixed...hbase 一、flink采集kafka数据 编写工具类获取kafka消费者作为flink数据源,需要设置server地址、key和value反序列化器、消费组Id、消费开始的offset package
数据中心的用户希望数据是由他们熟悉的术语表现的。 带有数据集市的数据仓储结构 区别数据仓库 数据集市就是企业级数据仓库的一个子集,它主要面向部门级业务,并且只面向某个特定的主题。...为了解决灵活性与性能之间的矛盾,数据集市就是数据仓库体系结构中增加的一种小型的部门或工作组级别的数据仓库。数据集市存储为特定用户预先计算好的数据,从而满足用户对性能的需求。...数据集市可以在一定程度上缓解访问数据仓库的瓶颈。 理论上讲,应该有一个总的数据仓库的概念,然后才有数据集市。实际建设数据集市的时候,国内很少这么做。...国内一般会先从数据集市入手,就某一个特定的主题(比如企业的客户信息)先做数据集市,再建设数据仓库。数据仓库和数据集市建立的先后次序之分,是和设计方法紧密相关的。...而数据仓库作为工程学科,并没有对错之分。 在数据结构上,数据仓库是面向主题的、集成的数据的集合。而数据集市通常被定义为星型结构或者雪花型数据结构,数据集市一般是由一张事实表和几张维表组成的。
本文从基本定义入手分析数据集市和数据仓库的差异,并分析了各自的适用情况。...基于数据集市工具得到的决策是影响特定部门运营方式的战术决策。 数据仓库定义 数据仓库是用于一个企业内的存储库,包含来自不同业务、系统和部门的集成数据。关于数据仓库类型,请参照如下文章。...应该从数据集市入手,还是从数据仓库入手,要基于你从事的行业考虑。...如果从数据仓库入手,通常使用ETL将数据直接从源系统获取到数据仓库,然后根据需要从数据仓库获取到数据集市。...如果采用Kimball方法并从数据集市入手,只需将相关源系统中的数据写入适当的数据集市,然后再执行ETL过程,以便从数据集市创建数据仓库。
~这就是关于数据仓库最贴切的定义了。事实上数据仓库不应让传统关系数据库来实现,因为关系数据库最少也要求满足第1范式,而数据仓库里的关系表可以不满足第1范式。...有了这些数据快照以后,用户便可将其汇总,生成各历史阶段的数据分析报告; 数据仓库组件 数据仓库的核心组件有四个:各源数据库,ETL,数据仓库,前端应用。如下图所示: ? 1....前端应用 和操作型数据库一样,数据仓库通常提供具有直接访问数据仓库功能的前端应用,这些应用也被称为BI(商务智能)应用; 数据集市(data mart) 数据集市可以理解为是一种"小型数据仓库",它只包含单个主题...数据集市可以分为两种,一种是独立数据集市(independent data mart),这类数据集市有自己的源数据库和ETL架构;另一种是非独立数据集市(dependent data mart),这种数据集市没有自己的源系统...当用户或者应用程序不需要/不必要不允许用到整个数据仓库的数据时,非独立数据集市就可以简单为用户提供一个数据仓库的"子集"。
本文将深入探讨一种基于大数据Lambda架构设计的风险数据集市整体架构,并详细介绍其底层实现原理及实现方式。一、风险数据集市概述风险数据集市是一个专门用于存储、处理和分析风险数据的数据中心系统。...2.2 加速层加速层主要负责处理实时数据。在风险数据集市中,实时数据通常包括交易实时监控数据、风险预警信息等。...同时,服务层还通过Hive等数据仓库工具创建可查询的视图,方便用户进行数据查询和分析。...2.3.2 Hive创建可查询视图Hive是一个数据仓库工具,它提供了类似SQL的查询语言HiveQL,方便用户对存储在HDFS中的数据进行查询和分析。...在风险数据集市的服务层中,可以通过Hive创建可查询的视图,方便用户进行数据查询和分析。
本文将深入探讨一种基于大数据Lambda架构设计的风险数据集市整体架构,并详细介绍其底层实现原理及实现方式。 一、风险数据集市概述 风险数据集市是一个专门用于存储、处理和分析风险数据的数据中心系统。...2.2 加速层 加速层主要负责处理实时数据。在风险数据集市中,实时数据通常包括交易实时监控数据、风险预警信息等。...同时,服务层还通过Hive等数据仓库工具创建可查询的视图,方便用户进行数据查询和分析。...2.3.2 Hive创建可查询视图 Hive是一个数据仓库工具,它提供了类似SQL的查询语言HiveQL,方便用户对存储在HDFS中的数据进行查询和分析。...在风险数据集市的服务层中,可以通过Hive创建可查询的视图,方便用户进行数据查询和分析。
数据仓库是现代数据堆栈的基础,所以当我们看到 Convoy 数据负责人 Chad Sanderson 在 LinkedIn 上宣称“数据仓库坏了”时,它引起了我们的注意。...不可变数据仓库如何结合规模和可用性 乍得桑德森的观点 现代数据堆栈有许多排列,但数据仓库是一个基础组件。...另一种方法:引入不可变数据仓库 不可变数据仓库概念(也称为活动 ETL)认为,仓库应该是通过数据来表示现实世界,而不是乱七八糟的随机查询、损坏的管道和重复信息。...这一层是 BI 工程师将工程中的内容与数据消费者需要的内容相匹配的地方,可以自动化生成 Kimball 数据集市。 不可变数据仓库也面临挑战。以下是一些可能的解决方案。...我并不认为不可变数据仓库是灵丹妙药。与任何方法一样,它也有其优点和缺点,而且肯定不是每个组织都适用。 与数据网格和其他崇高的数据架构计划一样,不可变数据仓库是一种理想状态,很少成为现实。
星座模型: 基于多张事实表,而且共享维度信息,即事实表之间可以共享某些维度表 维度建模步骤: 事实表种类: 事物事实表: 表中的一行对应空间或时间上某点的度量事件 周期快照事实表: 单个周期内数据..., 每行都带有时间值字段,代表周期 累计快照事实表: 由多个周期数据组成,每行汇总了过程开始到结束之间的度量 无事实的事实表: 有少量的没有数字化的值但是还很有价值的字段,无事实的事实表就是为这种数据准备的...使不同的查询能够针对两个或更多的事实表进行查询 上钻(roll-up):上卷是沿着维的层次向上聚集汇总数据。...例如,对产品销售数据,沿着时间维上卷,可以求出所有产品在所有地区每月(或季度或年或全部)的销售额。 下钻(drill-down):下钻是上钻的逆操作,它是沿着维的层次向下,查看更详细的数据。...数据抽取 业务数据 -- Sqoop 日志数据 -- Flume 其他数据 -- 通用第三方接口
查看、编辑数据仓库的基本模型(即事实表与维度表之间的关系)。针对某一系统需求,从无到有设计一 个数据仓库基本架构,要求能够按不同维度进行多维数据查询分析。...(5)数据集部署成功:成功部署了多维数据集项目,确保了数据仓库的数据可用性和准确性,使得可以进行后续的多维分析操作。...在本实验中,针对电商销售情况分析的需求,采用了星型模型来设计数据仓库的维度表和事实表,这样的设计能够简洁清晰地反映业务事件的关联关系。 在数据仓库的设计中,维度表的设计尤为重要。...通过定义数据源、数据源视图、维表、多维数据集等,完成了数据仓库的搭建和多维分析项目的部署。 ...总的来说,本次实验使我深入了解了数据仓库的建立方法和多维分析的基本过程,对于应用 SQL Server 进行数据仓库建模和多维分析项目开发有了更深入的理解和实践经验。
*了解数据仓库相关技术 *了解数据仓库设计过程建造,运行及维护 *了解OLAP及多维数据模型 决策支持系统及其演化 一般将数据分为:分析型数据与操作型数据 操作型数据:由企业的基本业务系统产生的数据...数据仓库的特性:面向主题性,集成性,不可更新和时间性。 集成:数据仓库最重要的特性,分为数据抽取转换,清理(过滤)和装载 不可更新:数据仓库中的数据以批量方式处理,不进行一般主义上的数据更新。...数据仓库的体系结构与环境 从数据层次角度的体系结构来看,典型的数据仓库的数据体系结构包括:操作型数据、操作型 数据存储、数据仓库、数据集市和个体层数据 从功能结构看,可分为数据处理、数据管理和数据应用三个层次...数据仓库的数据组织数据分割(分区)、元数据> 数据仓库的数据单位中保存数据的细化程度或综合程度的级别。...细化程度越高,粒度越小 粒度影响到数据仓库的数据量及系统能回答的查询的类型 进行数据仓库的数据组织时,应根据当前应用的需求进行多粒度级设计。满足多角度,多层次数据查询要求。
数据仓库之ODS层搭建 我们本项目中对数据仓库每层的搭建主要分为两部分,第一部分是确定都有哪些表,第二部分是确定数据装载的方式。...我们在进行ODS层搭建时,需要明确以下几点: 1)ODS层的表结构设计依托于从业务系统同步过来的数据结构。 2)ODS层要保存全部历史数据,故其压缩格式应选择压缩比较高的,此处选择gzip。...我们在进行数据同步时,同步到的用户行为日志数据当中是json字符串格式;增量表是使用Maxwell进行同步的,也是json字符串格式;全量表使用的是DataX同步的,同步到的数据是tsv格式的。...2.29数据装载脚本设计 由于上述28张表的数据装载逻辑相同,因此我们编写一个脚本来统一进行28张表的数据装载。...,可以进行单表数据的装载,也可以使用参数“all“来进行全表数据的装载。
一、数据仓库的概念 目前很难给数据仓库(Data Warehouse)一个严格的定义,不准确地说,数据仓库也是一种数据库,它与操作性数据库进行分开维护。...1、面向主题是指数据仓库会围绕一些主题来组织和构建,如顾客、供应商、产品等,数据仓库关注决策者的数据建模与分析,而不是企业的日常操作和事务处理,因此,数据仓库排除对决策支持过程无用的数据,提供面向特定主题的视图...3、相对稳定是指数据仓库大多会分开存放数据,数据仓库不需要进行事务处理、数据恢复和并发控制等机制,通常数据仓库只需要两种数据访问操作:数据的初始化装入和数据的访问。...二、数据仓库与操作性数据库的区别 为了进一步加深对数据仓库概念的理解,我们把数据库系统和数据仓库进行对比。为了区分,这里把数据库系统称为操作性数据库。...(3)传统数据仓库建立在关系型数据仓库之上,计算和处理能力不足,当数据量达到TB级后性能难以得到保证。
一、前言 工作内容的变更,导致重新回到数据仓库模型的架构和设计,于是花点时间比较系统的回顾数据仓库建模和系统建设的知识体系,记录下来,作为笔记吧。...二、模型 无论数据仓库技术如何变化,从RDBMS到NoSQL,从传统技术到大数据,其实只是实现技术手段的变化,数据仓库建设生命周期的模式从来都不曾真正颠覆性改变过。向前辈致敬。...另外项目团度在招:资深的数据仓库模型设计师-工作地点北京,有感兴趣的可以把简历发给我吧。
聚集数据集市的粒度通常比原子数据集市要高,和原子数据集市一样,聚集数据集市也是以星型结构来进行数据存储。前台还包括像查询管理、活动监控等为了提供数据仓库的性能和质量的服务。...在多维体系结构中,所有的这些基于星型机构来建立的数据集市可以在物理上存在于一个数据库实例中,也可以分散在不同的机器上,而所有这些数据集市的集合组成的分布式的数据仓库。...一致性维度 在多维体系结构中,没有物理上的数据仓库,由物理上的数据集市组合成逻辑上的数据仓库。而且数据集市的建立是可以逐步完成的,最终组合在一起,成为一个数据仓库。...如果分步建立数据集市的过程出现了问题,数据集市就会变成孤立的集市,不能组合成数据仓库,而一致性维度的提出正式为了解决这个问题。...这样,一致性维度将多个数据集市结合在一起,一致性事实保证不同数据集市间的事实数据可以交叉探查,一个分布式的数据仓库就建成了。
数据存储与管理层 元数据 元数据是关于数据的数据,位于数据仓库的上层,用以描述数据仓库内数据的结构、位置和 建立方法。通过元数据进行数据仓库的管理和使用。...数据仓库 数据仓库中存放了企业的整体信息,而数据集市只存放了某个主题需要的的信息,其目的是 减少数据处理量。...数据集市 数据集市面向企业中的某个部门(或某个主题),是从数据仓库中划分出来的,这种划分可 以是逻辑上的,也可以是物理上的。...可以简单的理解为,数据集市限于某个选定的主题,只是数据仓库的一个子集。...关系型在线分析处理(ROLAP) 多维在线分析处理(MOLAP) 混合型在线分析处理(HOLAP) 前端分析工具层 前端工具主要包括 数据分析工具 报表工具 查询工具 数据挖掘工具 各种基于数据仓库或数据集市开发的应用
构建自己的数据仓库时要考虑的基本因素 ? 我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。...通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。...大多数现代数据仓库解决方案都设计为使用原始数据。它允许动态地重新转换数据,而不需要重新摄取存储在仓库中的数据。 在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。...ETL vs ELT:考虑到数据仓库的发展 Snowflake构建在Amazon S3云存储上,它的存储层保存所有不同的数据、表和查询结果。...当数据量在1TB到100TB之间时,使用现代数据仓库,如Redshift、BigQuery或Snowflake。
一、Hive简介 (一)什么是Hive Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。...Hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。...Hive十分适合对数据仓库进行统计分析。...数据库可以用在 Online 的应用中,但是 Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。...3、数据更新 由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。
一、数据仓库建模的意义 如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑文件和文件夹,我们希望按照自己的习惯有很好的文件夹组织方式...下图是个示例,通过统一数据模型,屏蔽数据源变化对业务的影响,保证业务的稳定,表述了数据仓库模型的一种价值: 二、数据仓库分层的设计 为了实现以上的目的,数据仓库一般要进行分层的设计,其能带来五大好处:...三、两种经典的数据仓库建模方法 前面的分层设计中你会发现有两种设计方法,关系建模和维度建模,下面分别简单介绍其特点和适用场景。...1、维度建模 (1)定义 维度模型是数据仓库领域另一位大师Ralph Kimball 所倡导的。...3、标准化的推进:数据仓库建模的任何实体都需要标准化命名,否则未来的管理成本巨大,也是后续数据有效治理的基础,以下是我们的一个命名规范示例: 总而言之,你可以把我的文章当成一个指引,具体还是要结合企业的实际去推进
领取专属 10元无门槛券
手把手带您无忧上云