首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据仓库架构

目录 一、数仓 二、维度建模 星型模型 雪花模型 比较 三、Kimball的DW/BI架构 四、独立数据集市架构 五、辐射状企业信息工厂Inmon架构(CIF) 六、混合辐射状架构与Kimball架构...一、数仓 数据仓库的核心是展现层和提供优质的服务。...针对性强,主要应用于数据仓库构建和OLAP引擎低层数据模型。...总线架构 多维体系结构(总线架构) 数据仓库领域里,有一种构建数据仓库架构,叫Multidimensional Architecture(MD),中文一般翻译为“多维体系结构”,也称为“总线架构”(Bus...一致性维度 在多维体系结构中,没有物理上的数据仓库,由物理上的数据集市组合成逻辑上的数据仓库。而且数据集市的建立是可以逐步完成的,最终组合在一起,成为一个数据仓库

1.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据仓库发展、架构与趋势

    数据仓库概述 1)....相对稳定的 数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询。一旦某个数据进入数据仓库以后,一般情况下将被长期保留。...也就是说数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。 反应时间变化的 数据仓库中的数据通常包括历史和实时数据。...数据仓库架构演进 1). 传统数仓架构 ? 这是比较传统的一种方式,结构或半结构化数据通过离线ETL定期加载到离线数仓,之后通过计算引擎取得结果,供前端使用。...Kappa架构最大的问题是流式重新处理历史的吞吐能力会低于批处理,但这个可以通过增加计算资源来弥补。 5). 混合架构 上述架构各有其适应场景,有时需要综合使用上述架构组合满足实际需求。

    2.3K10

    数据仓库的基本架构

    因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用: 从图中可以看出数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自上而下流入数据仓库后向上层开放应用...数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(抽取Extra, 转化Transfer, 装载Load)的过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,它维系着数据仓库中数据的新陈代谢...下面主要简单介绍下数据仓库架构中的各个模块,当然这里所介绍的数据仓库主要是指网站数据仓库。...数据仓库的数据存储 源数据通过ETL的日常任务调度导出,并经过转换后以特性的形式存入数据仓库。...最后做个Ending,数据仓库本身既不生产数据也不消费数据,只是作为一个中间平台集成化地存储数据;数据仓库实现的难度在于整体架构的构建及ETL的设计,这也是日常管理维护中的重头;而数据仓库的真正价值体现在于基于其的数据应用上

    36320

    BDCC - 闲聊数据仓库架构

    ---- 典型数据仓库架构图 按自下而上的顺序,分别为 ETL(Extract-Transform-Load)层 ODS(Operational Data Store)层 CDM(Common Dimensional...---- 数据仓库ETL vs ELT ETL 数据仓库ETL主要用于完成数据接入的过程,即从业务系统或其他数据源中提取数据,并进行数据清洗、转换和加载到目的地系统(如数据仓库)中的过程。...---- 数据仓库分层 (1)数据仓库ODS层 数据仓库ODS层也称为操作数据源层,是数据仓库中的一个核心组成部分。...数据仓库ODS层通常采用可靠的数据仓库ETL工具为数据仓库提供数据,以此使源数据和数据仓库之间保持同步。...---- (3)数据仓库ADS层 ADS层也称为数据应用层,其主要功能是保存结果数据,为外部系统提供查询接口,基于数据仓库的数据为企业提供增值应用,并将数据仓库的数据应用于企业决策、报表、分析、控制等领域

    33010

    Hadoop + Hive 数据仓库原理与架构

    Hive简介 Hive是什么 Hive 构建在 Hadoop 之上,提供以下功能: 通过类 SQL 指令轻松访问数据的工具,从而实现数据仓库任务,例如:提取/转换/加载(ETL),报告和数据分析。...换句话来说,Hive 是基于 Hadoop 的一个数据仓库工具,是用来管理数据仓库的。可以将结构化的数据文件映射为一张数据库表,并提供类 sql 的查询功能。...Hive架构 先来看下Hive的架构图,如下图所示。 为了更好地理解 Hive 的架构图,下图以一个实际的例子作为讲解。...总结: 今天分享的内容包含:Hive是什么,Hive所具有的功能和优点,在 Hadoop 大数据生态圈中所饰演的角色,Hive架构等内容。...了解了 Hive 的基本内容和架构后,后续文章会持续更新 Hive 的相关操作和注意事项,以及在大数据测试过程中关于 Hive 的使用。敬请关注~ end

    1K20

    数据仓库建设之数仓架构

    一、离线数仓大数据架构 1.数仓架构 下面详细说明图中的各个组件及其所起的作用。 图中显示的整个数据仓库环境包括操作型系统和数据仓库系统两大部分。...企业级数据仓库:是该架构中的核心组件。正如Inmon数据仓库所定义的,企业级数据仓库是一个细节数据的集成资源库。其中的数据以最低粒度级别被捕获,存储在满足三范式设计的关系数据库中。...4.Kimball数据仓库架构 Kimball与Inmon两种架构的主要区别在于核心数据仓库的设计和建立。...5.混合型数据仓库架构 所谓的混合型结构,指的是在一个数据仓库环境中,联合使用Inmon和Kimball两种架构。...从架构图可以看到,这种架构将Inmon方法中的数据集市部分替换成了一个多维数据仓库,而数据集市则是多维数据仓库上的逻辑视图。

    1.5K30

    数据仓库架构数据仓库的三种模式建模技术

    以下主题提供有关数据仓库架构的信息: 数据仓库中的模式 第三范式 星型模式 优化星形查询 数据仓库中的模式 模式是数据库对象的集合,包括表、视图、索引和同义词。...在为数据仓库设计的模式模型中,有多种安排模式对象的方法。一个数据仓库模式模型是星型模式。示例模式(本书中大多数示例的基础)使用星型模式。但是,还有其他模式模型通常用于数据仓库。...例如,星型架构中的产品维度表可以规范化为雪花架构中的产品表、产品类别表和产品制造商表。虽然这样可以节省空间,但会增加维度表的数量,并需要更多的外键联接。结果是查询更加复杂,查询性能降低。...】 微信公众号 关注微信公众号【首席架构师智库】 微信小号 希望加入的群:架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化,产品转型。...点击加入知识星球【首席架构师圈】 微信圈子 志趣相投的同好交流。 点击加入微信圈子【首席架构师圈】 喜马拉雅 路上或者车上了解最新黑科技资讯,架构心得。

    3.2K51

    大数据-数据仓库的分层架构

    数仓的分层架构 按照数据流入流出的过程,数据仓库架构可分为三层——源数据、数据仓库、数据应用。 ?...数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自下而上流入数据仓库后向上层开 放应用,而数据仓库只是中间集成化数据管理的一个平台。...数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(抽取Extra, 转化 Transfer, 装载Load)的过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,它维系着数...据仓库中数据的新陈代谢,而数据仓库日常的管理和维护工作的大部分精力就是保持ETL的正常和稳 定。...为什么要对数据仓库分层?

    1.8K10

    数据仓库架构和建设方法论

    2.数据仓库架构 2.1.数据设计方法 数据仓库建立之前,就必须考虑其实现方法,通常有自顶向下、自底向上和两者结合进行的这样三种实现方案。...该方法的关键之一就是确定业务范围的架构需要用于支持集成的计划和设计的程度,因为数据仓库是用自底向上的方法进行构建。...在BI/DW领域中,围绕“哪一种数据仓库架构(Data Warehouse Architecture)最佳?”...设计方法如下图: 2.3.数据仓库架构选型 数据仓库架构的选取,与其所处的企业环境和业务的发展有着密切的关系:Inmon提倡的数据仓库建设方法,需要数据仓库建设人员自顶向下进行建设,数据仓库开发人员需要在数据仓库建设之前对企业各业务线进行深入的调研...其最简单的描述就是:按照事实表,维表来构建数据仓库、数据集市。这种方法最被人广泛知晓的名字就是星型建模。 上图就是这个架构中最典型的星型架构

    3K20

    数据仓库架构」数据建模:星型模式

    marcosanchezayala/data-modeling-the-star-schema-c37e7652e206 本文:http://jiagoushi.pro/node/1025 讨论:请加入知识星球或者微信圈子【首席架构师智库...】 微信公众号 关注微信公众号【首席架构师智库】 微信小号 希望加入的群:架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化,产品转型。...点击加入知识星球【首席架构师圈】 微信圈子 志趣相投的同好交流。 点击加入微信圈子【首席架构师圈】 喜马拉雅 路上或者车上了解最新黑科技资讯,架构心得。...点击,收听【智能时刻,架构君和你聊黑科技】 知识星球 认识更多朋友,职场和技术闲聊。 点击加入知识星球【知识和技术】

    1.3K11

    SQL Server数据仓库的基础架构规划

    问题 SQL Server数据仓库具有自己的特征和行为属性,有别去其他。从这个意义上说,数据仓库基础架构规划需要与标准SQL Server OLTP数据库系统的规划不同。...在本文中,我们将介绍在计划数据仓库时应该考虑的一些事项。 解决 SQL Server 数据仓库系统参数 数据仓库本身有自己的参数,因此每个数据仓库系统都有自己独特的特性。...ETL ETL (Extract-Transformation-Load):是数据仓库的一个基本组件。对于一些数据仓库,每日ETL就足够了。实际上,大多数数据仓库ETL都属于这一类。...有些数据仓库在白天有几个ETL作业,而其他ETL作业将在非高峰时间执行。在一些情况下,一些数据仓库需要实时数据。 从这些参数可以看出,数据仓库系统可以是这些参数的多个复杂性的组合。...负载类型 在分析数据仓库的容量之后,下一步是分析数据仓库的工作负载。数据仓库的典型工作负载是ETL、数据模型和报告。

    1.8K10

    漫谈数据仓库的分层架构与演进

    分层架构很容易在各种书籍和文档中去理解,但是把建模方法和分层架构放在一起就会出现很多困惑了。接下来,我会从数据研发与建模的角度,演进一下分层架构的设计原因与层次的意义。...并且这种情况从数据处理技术发展之初,数据仓库概念提出之前就存在了,现在依然很普遍。集市各自依赖ODS会遇到的多源加工指标不一致的问题逐渐遭人诟病,而造成指标不一致的主要原因重复加工。...因为在数据仓库领域,在数据建模一直有两种争锋相对的观点,就是范式建模还是维度建模。我们在目前大数据这个场景,一般就只提一种方法了,就是维度建模。...ODS+CDM+ADM的架构。...那么问题就在这里出来了,我们全部使用维度模型建模,如何使用范式模型的架构与概念。这也是我们在分层架构设计中目前最难以讲清楚的问题,也是我们实际在项目里面做的很别扭的原因:缺乏理论与实践支撑。

    32110

    数据仓库的分层和作用特点_数据仓库架构以及数据分层

    文章目录 一、前言 二、数仓建模 三、数仓分层 四、数仓的基本特征 五、数据仓库用途 六、数仓分层的好处 七、如何分层 一、前言 现在说数仓,更多的会和数据平台或者基础架构搭上,已经融合到整个基础设施的搭建上...二、数仓建模 说到数仓建模,就得提下经典的2套理论: 范式建模 Inmon提出的集线器的自上而下(EDW-DM)的数据仓库架构。...维度建模 Kimball提出的总线式的自下而上(DM-DW)的数据仓库架构。...三、数仓分层 简单点儿,直接ODS+DM就可以了,将所有数据同步过来,然后直接开发些应用层的报表,这是最简单的了;当DM层的内容多了以后,想要重用,就会再拆分一个公共层出来,变成三层架构,最近看了本阿里的书...2、时间价值 数据仓库的构建将大大缩短获取信息的时间,数据仓库作为数据的集合,所有的信息都可以从数据仓库直接获取,数据仓库的最大优势在于一旦底层从各类数据源到数据仓库的ETL流程构建成型,那么每天就会有来自各方面的信息通过自动任务调度的形式流入数据仓库

    2.6K32

    一篇文章搞懂数据仓库数据仓库架构-Lambda和Kappa对比

    在介绍Lambda和Kappa架构之前,我们先回顾一下数据仓库的发展历程: 传送门-数据仓库发展历程 写在前面 咳,随着数据量的暴增和数据实时性要求越来越高,以及大数据技术的发展驱动企业不断升级迭代,数据仓库架构方面也在不断演进...,分别经历了以下过程:早期经典数仓架构 > 离线大数据架构 > Lambda > Kappa > 混合架构。...架构组成特点经典数仓架构关系型数据库(mysql、oracle)为主数据量小,实时性要求低离线大数据架构hive,spark为主数据量大,实时性要求低Lambdahive,spark负责存量,strom...,但架构本身也存在一定缺点。...这种系统实际上非常难维护 服务器存储大:数据仓库的典型设计,会产生大量的中间结果表,造成数据急速膨胀,加大服务器存储压力。

    3.7K11

    架构师 | 数据仓库建设灵魂10问

    笔者先后在外企,互联网,金融行业工作,从最初的ODS,DM架构到后面ODS,DWD,DWS,ADS架构都有较深的理解和应用,甚至在相当长的时间内,数仓设计一直作为一个常规的面试题目,来考核各层级的数仓开发和架构师...然而在实际的沟通的交流中,发现很多同学虽然对同样的架构分层设计多多少少都能说出来一些,但是反过来再问为什么这样分层,答案就五花八门了。...这篇文章主要针对数仓设计来谈谈我的看法,因为不同的规模的公司对数仓建设的目的有差异,这里从架构师角度仅讨论中大型企业的数仓架构建设。本文主要以一问一答式来展开讨论。 1.一般用数仓来做什么?...数仓一般分为实时和离线数仓,现在绝大多数公司采用的是lambda架构来统筹管理实时和离线数据,那么就有这样一个问题,数仓能干啥?...所以接下来我讲的整个公司的数仓架构。这里再明确一下,这里的数仓是广义的数仓,而不是狭义的数仓层(对应上面的集市层)。以下我给出最可能的最小层级。

    52240
    领券