数据分析是数据时代和数据经济里面的“硬实力”,数据分析有一套系统的科学的方法论,简称为“数据分析框架”。 数据分析是什么?为什么要掌握和应用数据分析呢?每一位数据人在玩数据的路上,都可以问问自己。...关于数据分析是什么,可以阅读这篇文章《数据分析到底是什么》 1 数据分析框架,数据分析的方法论和指南针。 ? 2 数据分析流程,数据分析的思考路线和工作步骤。 ?...说明:这两图片摘录埃森哲数据分析方法论 看了数据分析框架和数据分析流程图,数据人很容易想到IBM公司的数据挖掘标准:CRISP-DM,标准如下图所示: ?...这个标准就是数据分析框架和流程的源泉,关于这个标准简要说明如下。...,评价结果,重审过程 部署(deployment):分析结果应用 俗话说“实践出真知”。
数据分析是数据时代和数据经济里面的“ 硬实力 ”,数据分析有一套系统的科学的方法论,简称为“数据分析框架”。 数据分析是什么?为什么要掌握和应用数据分析呢?...每一位数据人在玩数据的路上,都可以问问自己。 关于数据分析是什么,可以阅读这篇文章《数据分析到底是什么》 1 数据分析框架,数据分析的方法论和指南针。 ...2 数据分析流程,数据分析的思考路线和工作步骤。 ...说明:这两图片摘录埃森哲数据分析方法论看了数据分析框架和数据分析流程图,数据人很容易想到IBM公司的数据挖掘标准:CRISP-DM,标准如下图所示: 这个标准就是数据分析框架和流程的源泉,关于这个标准简要说明如下...):对模型进行较为全面的评价,评价结果,重审过程 - 部署(deployment):分析结果应用 俗话说 “实践出真知” 。
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 引用林骥老师关于雷达图的使用场景: 雷达图的背景一圈一圈地像雷达,用多边形来展现数据的大小...endpoint=False) # 增加第一个 angle 到所有 angle 里,以实现闭合 angles = np.concatenate((angle, [angle[0]])) # 倒转顺序,以让雷达图顺时针显示...set_thetagrids(angles*180/np.pi, labels=label) ax2.set_thetagrids(angles*180/np.pi, labels=label) # 画雷达图,
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 首先介绍哑铃图: 哑铃图,是指用一条横线连接两个点、看起来有点像哑铃的图,主要是用来强调从一个点到另一个点的变化...image.png 数据如下: 城市 2017 2018 郑州 109.05 103.47 洛阳 108.39 95.86 安阳 119.99 110.99 开封 102.13 103.24 焦作 110.68...< 0].iloc[:, 1], ymax=df[df['变化']< 0].iloc[:, 2], color=c['浅蓝色'], zorder=1, lw=5,label='下降') # 绘制哑铃图两头的圆点
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 子弹图,它的样子有点像子弹,能够表达比较丰富的信息,例如表现好、中、差的取值范围,并突出显示实际值与目标值的差异情况...image.png 林老师GitHub子弹图代码如下: # 导入所需的库 import numpy as np import matplotlib as mpl import matplotlib.pyplot...family':'SimHei', 'color':'#00589F', 'size':15} # 标示制图的作者信息 ax2.text(1, 0.2, ' 制图:林骥\n' + r'$@$' + '数据化分析
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 斜率图,可以快速展现两组数据之间各维度的变化,特别适合用于对比两个时间点的数据。...斜率图的优势,是能快速看到每个类别前后发生的变化,并能根据线条的陡峭程度,直观地感受到变化的幅度。...df.values fig, axes=plt.subplots(2,3,figsize=(4, 6)) fig.set_facecolor('w') axes=axes.flatten() # 画斜率图
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 堆叠条形图,用于展示不同类别之间占比数据,常常能起到很好的对比效果。...image.png 数据如下: date level1 level2 level3 201701 0 8 23 201702 0 6 22 201703 0 15 16 201704 0 15 15 201705...0, np.sum(data, axis=1).max()) # 定义颜色 category_colors = [ c['蓝色'], c['浅蓝色'], c['浅橙色']] # 画堆叠水平条形图
不过,获取数据不是智能威胁分析技术本身的关注重点,如何组织并使用数据才是核心问题。 网络环境本身具有典型的图结构,网络安全问题也因此很自然的与图数据结构、图算法结合起来。...国外使用多源安全数据构建统一分析图结构的项目还有Cauldron[3]。...网络安全数据结构中蕴含的图基因,不仅仅是数据可视化的基础,更是用以对抗网络空间威胁的安全智能构建的基础。那么,智能威胁分析能力的构建需要那些数据图的支撑呢? 三、构建智能威胁分析能力的关键数据图 ?...: 环境数据图:如资产、资产脆弱性、文件信息、用户信息、IT系统架构信息等 行为数据图:如网络侧检测告警、终端侧检测告警、文件分析日志、应用日志、蜜罐日志、沙箱日志等 情报数据图:各类外部威胁情报 知识数据图...当然,一个可用的、可拓展的图数据架构,不仅需要数据处理、存储框架等基础设施的支持,更重要的,是要保证不同种类的数据图内部和数据图之间的数据关联和交互。
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 水平方向的条形图非常适合阅读,因为文字的方向通常也是水平的,这符合我们的阅读习惯,有利于提高信息传递的效率...)), ' ' + category_names, ha='right', color=c['深灰色'], size=18) # 设置标签的字体大小 fontsize = 12 # 设置第一个条形图的数据标签...rect.get_height()/2, ' %.2f' % w, ha='left', va='center', color=c['深灰色'], fontsize=fontsize) # 设置第二个条形图的数据标签
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 柱形图是一种很常见的图形,用来进行对比分析,是一种比较好的选择。...,让观察者关注柱子的高度,而不是宽度和面积; 3、如果柱形图中某些具体的数值很重要,那么直接在柱子的附近显示数据标签,把 Y 轴隐藏掉,让观察者聚焦于关键的信息本身,而不是视线来回移动; 4、如果希望用柱形图来反映数据的整体趋势...,那么可以考虑保留 Y 轴,但是应该将 Y 轴的颜色变成灰色,以削弱其重要性; 5、谨慎使用包含多组数据的条形图,因为这可能会让观察者难以得出结论,考虑你想对比什么,并以此构造分类的层级,尽可能让柱形图变得简单易懂
from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第...from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第...在图像里面有所谓「子图」。子图的位置是由坐标网格确定的,而「坐标轴」却不受此限制,可以放在图像的任意位置。...from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 2 * 1 的子图,接下来的图样绘制在其中的第...散点图,柱状图,3D图等 from pylab import * n = 1000 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) #散点图
通过图查询语言进行图可视化有助于分析大量数据并识别欺诈活动的模式。...典型的图数据库如 Nebula Graph,我们本次的分析挖掘用到的数据集是 insurance claims 保险索赔数据,大家可以通过 ShowMeAI 的百度网盘地址下载。...使用图分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub 欺诈典型案例查找欺诈性索赔...使用图分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub具体的信息包括:...可以很清晰地看到:具有图特征的模型表现出色节点级别特征效果非常好聚类特征对结果也有补充作用 总结对于关联型业务场景,我们可以查询、可视化和分析图数据,构建有效的信息支撑更强大的商业欺诈方案,特别是对于试图通过复杂网络结构隐藏的欺诈活动
下面看一下利用基因型SNP数据进行PCA计算,以及可视化的分析。 很多软件可以分析PCA,这里介绍一下使用plink软件和R语言,进行PCA分析,并且使用ggplot2绘制2D和3D的PCA图。...绘制后的图如下: 2-D PCA图: 图片解释,将每个品种用不同的颜色表示,同时绘制置信区间圆圈,X坐标是PC1,解释24.9%的变异,Y坐标是PC2,解释10.61%的变异。...可以看到,三个品种在PCA图里面分的比较开,C品种的有两个A和B的点,应该是异常数据。 基因型数据: 共有3个品种A,B,C,共有412个个体。...然后使用R语言,计算PCA,并绘制PCA图。...如果进行GWAS分析,PCA加进去就很有必要!
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/101956.html原文链接:https://javaforall.cn
,看过哪些页面、每个页面的停留时长;平台信息对这个用户的综合评价性指标,首次登陆时间、活跃频次、日常访问时间段、停留时长、留存情况、复购情况等; 商品的衍生信息,基于浏览/检索的内容信息反向搭推荐内容框架...对意向的理解都会造成一系列的问题; 产品问题,在设计产品的时候,没有充分考虑到不同类型用户的使用习惯,体验感差; 流程问题,信息流转过程中容易出现的一些重复操作、信息冗余,造成整体耗时较长; …… 我们可以把这样的问题归纳为:数据分析算法问题...、产品问题、流程问题,就需要进行深入的专项分析,最终进行定位解决。...形成数据闭环,数据应用的结果需要进行跟进,反哺规则、算法、模型上的迭代 在实际的业务过程里面永远不存在一次性分析,毕竟市场在变、环境在变、生活方式在变、人的行为习惯喜好也都在变化的过程里面,用户和产品都在成长...成为新手玩家、了解规则成为朋友、恋爱期的粘性用户、蜜月期的忠诚、逐渐冷淡之后的消沉、分手之后的死亡; 对于商品而言,在设计师的各种脑暴和灵魂创造之后,可以概括为设计、生产、上市、热卖、退市、处理几个阶段; 对于数据分析而言
讲数据分析体系的文章很多,经常是开篇一句:互联网分析体系……,下边几百个指标blabla汹涌而出。搞得很多同学很晕菜:这么多指标,实际中到底怎么看?今天系统讲解一下。话不多说,直接上场景。...这样能减少数据干扰,更容易得出结论(如下图)。 ? ▌ 相关系数低:比如播放次数和人均时长,不见得高度相关。很有可能有的视频太过标题党,标题太刺激,配图很色诱,把玩家骗进来结果发现货不对板。...有了评价,就能做出进一步分析。 5 从多指标到原因解读 评价了好/坏,就能进一步分析:为什么好、为什么坏。到这一步,就会发现,现有数据指标的问题:虽然看似一堆指标,可都是结果性指标。...这时优先考虑的是:补充数据,看看添加哪些数据能解释清楚问题。...6 小结 搭建数据分析体系可以很简单(如下图) ?
本专栏将使用tableau来进行数据分析,Tableau数据分析-Chapter13雷达图和凹凸图,记录所得所学,作者:北山啦 文章目录 本节要求 1 雷达图 1.1 数据表处理 1.2 创建计算字段...1.3 绘制雷达图 1.4 调整雷达图 2 凹凸图 2. 1 超市各年份利润的凹凸图 本节要求 1 雷达图 雷达图主要是用来进行多个维度的比较和分析 1.1 数据表处理 数据展示 可以看出有能力...推荐阅读: Tableau数据分析-Chapter01条形图、堆积图、直方图 Tableau数据分析-Chapter02数据预处理、折线图、饼图 Tableau数据分析-Chapter03基本表、...树状图、气泡图、词云 Tableau数据分析-Chapter04标靶图、甘特图、瀑布图 Tableau数据分析-Chapter05数据集合并、符号地图 Tableau数据分析-Chapter06填充地图...粒度、聚合与比率 Tableau数据分析-Chapter10 人口金字塔、漏斗图、箱线图 Tableau数据分析-Chapter12 网络图与弧线图 Tableau中国五城市六年PM2.5数据挖掘
Tableau-Chapter04标靶图、甘特图、瀑布图 本专栏将使用tableau来进行数据分析,Chapter04标靶图、甘特图、瀑布图,作者:北山啦 文章目录 Tableau-Chapter04...标靶图、甘特图、瀑布图 本节要求 标靶图 标靶图的概念和用途 二月份电量销售额完成情况 参考线 参考区域 甘特图 甘特图的概念和用途 交货延期情况的甘特图 不同的日期类型选择 瀑布图 瀑布图的概念和用途...超市不同子类产品的盈亏瀑布图 在这里插入图片描述 推荐阅读 本专栏将使用tableau来进行数据分析,Chapter04标靶图、甘特图、瀑布图,作者:北山啦 本节要求 本文链接:https...,参考区间,可以帮助分析人员更加直观的了解两个度量之间的关系。...长方形高度->标签、长方形高度->颜色 4.分析<合计< 显示行总结 显示效果 ---- 到这里就结束了,如果对你有帮助,欢迎点赞关注,你的点赞对我很重要
在看相关代码的时候阅读了我们项目使用的数据库框架GreenDao 。哈哈,挺有意思的^ _ ^。...GreenDao框架分析 GreenDao3.0官网介绍 GreenDao文档 GreenDao的Github仓库 GreenDao 的使用在这里就不介绍了,上面的文档链接或者网络上的各种使用教程讲的都很详细...这里主要分析、对比一下GreenDao框架 在原生的基础之上进行了怎么样的封装。 在进行源码分析之前我们先说一下GreenDao 的优缺点,然后在下面的阅读过程中自己进行体会。...数据库框架设计 文章前面简单的用代码进行数据库操作,我们可以从中看到一般在Android中操作数据库所需要的对象有: SQLiteOpenHelper:数据库的创建、更新的操作对象; SQLiteDatabase...:执行数据的增删改查的操作对象; SQLiteStatement:SQL 执行的操作对象; 所以首先任何一个数据框架都需要对这几个对象做封装,其次就是对于ORM模式 的数据库框架来说对象和数据库之间映射的元数据
领取专属 10元无门槛券
手把手带您无忧上云