首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据分析基本思路及手法

数据分析,是产品运营极具战略意义一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人必修课。 首先,我们来看比较常见分析方法: 5W2H分析法:What(用户要什么?)...真正数据分析不在于数据本身,而在于分析能力概述;数据是参照物,是标杆,只有分析才是行为,是改变;那么如何分析,综合上面两个举例,已经可以很清晰看到立体式分析。...最后便是一种较为常见数据分析手法:杜邦分析法 以上是关于数据一些概括,对于数据分析,需要我们以理性眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析...,根据自己数据分析思路制定相应分析方案,切不可盲目分析,粗暴分析。...最后值得注意是精细化运营数据分析工作,思维不能乱,思维乱了,全盘皆乱;这时候数据分析也无法提供正确考量价值,如果觉得数据分析毫无头绪,杂乱无章;冷静下来,理顺思路,有大概数据构思之后再做行动;

54550

数据分析基本思路及手法

数据分析,是产品运营极具战略意义一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人必修课。 首先,我们来看比较常见分析方法: 5W2H分析法:What(用户要什么?)...真正数据分析不在于数据本身,而在于分析能力概述;数据是参照物,是标杆,只有分析才是行为,是改变;那么如何分析,综合上面两个举例,已经可以很清晰看到立体式分析。...立体式分析,也就是维度分析;产品数据发掘不应该仅仅拘泥于产品;大环境下娱乐产物必须综合产品、市场、用户进行不同切入点分析;要知道,数据分析是基于商业目的,而商业离不开用户和市场;说白了就是结合不同维度进行有目的数据收集...以上是关于数据一些概括,对于数据分析,需要我们以理性眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析,根据自己数据分析思路制定相应分析方案...最后值得注意是精细化运营数据分析工作,思维不能乱,思维乱了,全盘皆乱;这时候数据分析也无法提供正确考量价值,如果觉得数据分析毫无头绪,杂乱无章;冷静下来,理顺思路,有大概数据构思之后再做行动;

79261
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    游戏数据分析基本思路与方法

    数据分析是产品运营极具战略意义一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人必修课。 首先,我们来看比较常见分析方法: 5W2H分析法:What(用户要什么?)...真正数据分析不在于数据本身,而在于分析能力概述;数据是参照物,是标杆,只有分析才是行为,是改变;那么如何分析,综合上面两个举例,已经可以很清晰看到立体式分析。...最后便是一种较为常见数据分析手法:杜邦分析法 以上是关于数据一些概括,对于数据分析,需要我们以理性眼光对待;因为各家对相关数据定义不同,算法不同;在对数据进行分析时需要我们看清分析误区,综合其他数据进行分析...,根据自己数据分析思路制定相应分析方案,切不可盲目分析,粗暴分析。...最后值得注意是精细化运营数据分析工作,思维不能乱,思维乱了,全盘皆乱;这时候数据分析也无法提供正确考量价值,如果觉得数据分析毫无头绪,杂乱无章;冷静下来,理顺思路,有大概数据构思之后再做行动;

    2.1K60

    数据分表分库基本思路

    当一个数据库被创建之后,随着时间推移和业务量增加,数据库中表以及表中数据量都会越来越多,就有可能会出现两种弊端: (1)数据存储资源是有限,其负载能力也是有限数据大量积累肯定会导致其处理数据能力下降...; (2)数据量越多,那么对数据增删改查等操作开销也会越来越大; 所以,当出现如上两种情况,分库分表势在必行。...假设有一千万条用户信息,如果只有一张表,每个用户登录时候数据库都要从这一千万中查找,会很慢很慢。哪怕你建立了索引。...,在页面上需要做提示:数据以每一年数据为区间分割,无法跨区间查询 * 或者在代码中判断日期区间,然后分别查询,结果合并 */ // 开始结束时间 $beginTime = '2017-09-01...10月以前数据 $limitTime_2 = '2019-01-01 00:00:00'; // 10月1号到11月1号数据 switch ($endTime) { case ($endTime

    53420

    数据库表设计 基本思路

    大家好,又见面了,我是你们朋友全栈君。好数据结构会影响速度。好数据库表设计会影响数据库操作效率。特别是数据时候,如果表结构不好的话操作时候条件(where后内容)会变非常复杂。...当然,这就看你想通过表获得哪些数据,一切设计是为了方便数据库操作。在方便自己前提下将数据字段设计成“原子化”(即不可再细分)。...比如说,一个网上商店数据表,什么路多少号对于它来说就是原子化数据了,就不用再把什么街多少号分开做为两个字段来存储。...前面提到了两个表关联.两个表之间数据关系有三种: 1)一对一;两个表里数据唯一对应; 2)一对多;表A在表B里对应多条数据,但表B里一条数据绝对只对就A中一条数据; 3)多对多;A里一条数据对应...B里多条数据,B里一条数据也对应A中多条数据.

    91320

    运维技术方案基本思路

    运维技术方案基本思路主要包括以下几个方面:1.明确目标与需求:首先,需要清晰地定义运维目标和预期效果,这通常与业务目标、系统稳定性、性能优化等方面紧密相关。...分析现有运维流程、工具和方法,找出存在问题和瓶颈,为后续优化提供依据。3.技术选型与架构设计:根据需求分析和系统评估结果,选择适合运维工具、平台和技术。...结合大数据分析和人工智能技术,实现故障预测、智能告警等功能,提升运维智能化水平。5.安全与可靠性保障:制定完善安全策略,包括身份认证、访问控制、数据加密等方面,确保系统安全性。...根据监控数据,定期分析系统运行状态,发现潜在问题并及时进行优化。7.培训与支持:对运维团队进行技术培训,提升团队技术水平和应对复杂问题能力。...提供必要技术支持和维护服务,确保运维方案顺利实施和长期稳定运行。通过以上基本思路,可以构建一个全面、高效、可靠运维技术方案,为企业数字化转型和智能化升级提供有力支持。

    27310

    JVM GC原理及调优基本思路

    这样做目的是在年轻代和年老代采用不同收集算法,以达到较高收集效率,比如在年轻代采用复制-整理算法,在年老代采用标记-清理算法。...收集过程 将所有存活对象将从收集区域复制到未分配区域,比如收集区域是Eden空间,把Eden中存活对象复制到未分配区域,这个未分配区域就成了Survivor空间。...内存调优实战 下面我通过一个例子实战一下Java堆设置得过小,导致频繁GC,我们将通过GC日志分析工具来观察GC活动并定位问题。...GC log分析图如下: 你可以看到,没有发生Full GC,并且年轻代GC也没有那么频繁了,并且累计GC暂停时间只有3.05秒。...总结 CMS来说,我们要合理设置年轻代和年老代大小。你可能会问该如何确定它们大小呢?这是一个迭代过程,可以先采用JVM默认值,然后通过压测分析GC日志。

    45620

    JVM GC原理及调优基本思路

    这样做目的是在年轻代和年老代采用不同收集算法,以达到较高收集效率,比如在年轻代采用复制-整理算法,在年老代采用标记-清理算法。...收集过程 将所有存活对象将从收集区域复制到未分配区域,比如收集区域是Eden空间,把Eden中存活对象复制到未分配区域,这个未分配区域就成了Survivor空间。...内存调优实战 下面我通过一个例子实战一下Java堆设置得过小,导致频繁GC,我们将通过GC日志分析工具来观察GC活动并定位问题。...GC log分析图如下: 你可以看到,没有发生Full GC,并且年轻代GC也没有那么频繁了,并且累计GC暂停时间只有3.05秒。...总结 CMS来说,我们要合理设置年轻代和年老代大小。你可能会问该如何确定它们大小呢?这是一个迭代过程,可以先采用JVM默认值,然后通过压测分析GC日志。

    42110

    【说站】python归并排序基本思路

    python归并排序基本思路 基本思路 归纳排序是采用分治法非常典型应用。 1、先归还分解组,然后合并组。基本构想是将数组分解到最小,然后合并两个有序数组。...2、基本构想是比较两个数组最前面的数量,谁小就先取谁,取后取相应指针后移。 然后进行比较,直到一个组是空,最后复制另一个组剩馀部分即可。...alist)     if n <= 1:         return alist     else:         mid = n // 2         # left 表示采用归并排序后形成有序列表...        left_li = merge_sort(alist[:mid])           # right 表示采用归并排序后形成有序列表         right_li = merge_sort...55, 20]     print(alist)     sorted_alist = merge_sort(alist)     print(sorted_alist) 以上就是python归并排序基本思路

    24720

    贪心算法总结贪心算法基本思路算法实现实例分析参考

    基本思路 建立数学模型来描述问题; 把求解问题分成若干个子问题; 对每一子问题求解,得到子问题局部最优解; 把子问题解局部最优解合成原来解问题一个解。 算法实现 从问题某个初始解出发。...实例分析 实例1 背包问题 问题描述 有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要求尽可能让装入背包中物品总价值最大,但不能超过总容量。 ?...问题分析 1.目标函数: ∑pi最大,使得装入背包中所有物品pi价值加起来最大。...(ps:活动结束时间按从小到大排序) 问题分析: 活动安排问题要求安排一系列争用某一公共资源活动。用贪心算法可提供一个简单、漂亮方法,使尽可能多活动能兼容使用公共资源。...给出t,表示有t组测试数据。再给出n,表示要移动n个桌子。n下面有n行,每行两个数字,表示将桌子从a房间移到b房间。

    11.8K42

    深度 | 使用高斯过程因果推理:GP CaKe 基本思路

    背景:对多变量时间序列分析 这项研究研究背景是带有一个时间维度复杂系统。...通过观察 IRF,我们可以明确地看到 Granger 因果交互时间形状: ? 图 1:在三大金融指数上 VAR 分析示例。...我们将使用一个已知脉冲响应函数来生成某些数据,然后会尝试使用 VAR 和 GP CaKe 来恢复它。...现在,我直接用人工方式将这些参数设置成合理值;在实际应用时,我们会根据数据来估计它们值,并通过相关应用背景知识来设置它们。图 3 展示了模拟实验结果。...这个模拟实验为 GP CaKe 在实际数据应用提供了一个很好起点。我们看到 GP CaKe 结果要平滑得多,也可靠得多。这确实需要我们学习能确定响应函数平滑度、定位和噪声水平超参数。

    67410

    干货丨深度迁移学习方法基本思路

    本文选自《深度学习500问:AI工程师面试宝典》,将重点介绍目前最热门深度迁移学习方法基本思路。...综合分析上述结果就得到了下图深度网络迁移实验结果2。 作者进一步设想,是不是在分A、B数据时,里面存在一些比较相似的类使结果变好了?例如,A里有猫,B里有狮子,所以结果会好。...3 深度网络自适应    ▊ 基本思路 深度网络微调可以帮助我们节省训练时间,提高学习精度。但是微调有它先天不足:它无法处理训练数据,无法测试不同数据分布情况。...自适应能够使源域和目标域数据分布更加接近,从而使网络精度、稳定性更好。 从上述分析可以得出,深度网络自适应主要完成两部分工作。 (1)决定哪些层可以自适应,这决定了网络学习程度。...DDC方法遵循了上面讨论过基本思路,采用了在ImageNet数据集上训练好AlexNet网络进行自适应学习[Krizhevsky et al.,2012]。 下图是DDC方法示意图。

    57930

    动态规划算法总结动态规划基本思路算法实现实例分析参考链接

    动态规划 动态规划算法是通过拆分问题,定义问题状态和状态之间关系,使得问题能够以递推(或者说分治)方式去解决 基本思路 动态规划算法基本思想与分治法类似,也是将待求解问题分解为若干个子问题...(阶段),按顺序求解子阶段,前一子问题解,为后一子问题求解提供了有用信息。...算法实现 使用动态规划求解问题,最重要就是确定动态规划三要素: (1)问题阶段-----问题边界 (2)每个阶段状态-----最优子结构 (3)从前一个阶段转化到后一个阶段之间递推关系-...-----转态转移公式 实例分析 实例1 爬楼梯 问题描述 有一座高度是10级台阶楼梯,从下往上走,每跨一步只能向上1级或者2级台阶。...要求用程序来求出一共有多少种走法 问题分析 代码实现 参考链接

    83340

    第45期:一条 SQL 语句优化基本思路

    面对千奇百怪 SQL 语句,虽然数据库本身对 SQL 语句优化一直在持续改进、提升,但是我们不能完全依赖数据库,应该在给到数据库之前就替它做好各种准备工作,这样才能让数据库来有精力做它自己擅长事情...逻辑优化可以理解为基于N多数据库内置规则预处理,规则定义越全面,对 SQL 语句优化就越极致。...查询每张表字段类型,看有无不合理部分。查询每张表记录数,检查是否过大需要后续拆分。查询每张表统计信息,检查是否及时做了更新。针对这些表结构做进一步分析,查看索引设计是否合理?...该视图内部如果有很复杂处理逻辑,想办法把这部分内容简化或者从数据库剥离转交给应用处理,避免数据库将其劣势放大。...比如这条语句本身是20张表内联查询,那它不够优化并不是因为写不好,而是表关联个数实在太多。SQL语句本身很复杂,仔细分析后,可以简化这条语句写法。

    74430

    数据分析”岗位数据分析项目

    数据分析”岗位分析 项目介绍 该项目选用了和鲸社区关于数据分析岗位数据集来进行分析。...通过对数据进行清洗重塑和分析,再使用plotly等工具进行绘图,实现图表交互式数据可视化,最后使用flask框架(利用了bootstrap)进行网页上可视化展示。...最后展示了关于数据分析岗位的人才需求分布情况、薪资情况以及发展前景。...项目来源:选用boss直聘网站数据分析职位招聘数据 数据清洗 清洗重复值、空缺值,重塑职位、城市、薪资、工作经验以及行业标签数据。...东部地区数据分析”岗位薪资基本不在4-6k范围。 数据交互可视化展示 首页 跳转交互页面 不同城市平均薪资 薪资在四千至六千岗位数量 项目获取:搜索 微信小程序 项目资源下载

    90811

    数据分析数据敏感性?|数据分析

    摘要:什么叫数据敏感?怎样做数据分析? 一、从数据维度做拆分,让目标更加落地。 我做过近两年电商运营,其中感触很深一个点就是从数据维度对目标做拆分。...四、一篇完整数据分析报告应该包含哪些内容? 前面讲了一些理论层面的,最后给一个数据分析模板给大家,供参考。 1、首先你需要根据活动目标确定你目标达成率,完成百分比,提升百分比。...在这张图里,要对每个数据拐点做分析,比如图中11月7日、8日两天uv价值有明显提升,这个原因,要找到并写在报告里。 3、接下来流量分析,主要为流量来源分布,各渠道流量转化率分析。...我们常做数据分析,是建立在海量数据情况下,但往往在初创公司,数据系统还不完善,数据量不够情况下,数据只能作为参考,过分相信数据往往会导致做出错误判断。...做数据分析,重点不在数据,而在分析,对数据敏感,就是能清楚数据异常背后原因,这需要经验,也需要你思考和执行力。希望你可以成为一个对数据敏感互联网人。 来源:酥酥说----

    3.2K70

    python数据分析——数据分析数据导入和导出

    数据分析数据导入和导出 前言 数据分析数据导入和导出是数据分析流程中至关重要两个环节,它们直接影响到数据分析准确性和效率。...导入数据后,接下来就需要进行数据探索和分析。在这一阶段,分析师会利用各种统计方法和可视化工具来揭示数据背后规律和趋势。通过对数据深入挖掘,可以发现隐藏在数据有用信息,为决策提供支持。...然而,数据分析目的不仅仅是为了理解和解释数据,更重要是将数据转化为有价值信息和知识。这就需要将分析结果以易于理解和使用形式导出,供其他人使用。...总之,数据分析数据导入和导出是数据分析流程中不可或缺两个环节。它们不仅关系到数据分析准确性和效率,还直接影响到数据分析价值和意义。...总结 数据分析数据导入和导出非常重要,需要考虑到数据质量、结构、格式和效率等方面,以确保数据准确性和可用性。数据导入和导出方式多种多样,选择适合方式和工具,可以帮助我们高效地进行数据分析

    16210

    python数据分析——数据分析数据模型

    前言 数据分析数据模型是决策支持系统重要组成部分,它通过对大量数据收集、整理、分析和挖掘,为企业提供有价值信息,以支持企业战略规划和日常运营。...数据模型选择和应用,直接关系到数据分析准确性和有效性,进而影响企业决策质量和市场竞争力。 在构建数据模型时,首先要明确分析目标和需求。...数据分析准确性和可靠性在很大程度上取决于数据质量。因此,在建立数据模型时,需要对数据来源进行严格筛选和验证,确保数据准确性和完整性。...综上所述,数据分析数据模型是企业决策支持系统重要组成部分,其选择和应用需要综合考虑分析目标、数据质量、计算资源等多个因素。...三、方差分析 方差分析通过样本数据能够一次性比较两个及两个以上总体均值是否有显著性差异。从定义上看,方差分析分析数据间均值差异,称其为“方差分析”是因为关于均值差异结果是通过分析方差得到

    22511

    数据分析】大数据用户行为分析

    海量数据处理困难: (1)问题:面临TB甚至PB级海量数据,传统关系数据库存储尚可,但对OLAP分析效仿低下; (2)难点:如何可实现可扩展数据存储、灵活快捷数据访问?...(3)思路:利用Nosql数据库解决大数据存储,通过水平扩展读写负载提高访问性能; 分析模型算法复杂: (1)问题:分析需要运用预警预测、聚类、协同过滤等数据挖掘算法,算法编程复杂度和计算复杂度都非常大...; (2)难点:如何实现分析模型,并提供实时高速复杂分析; (3)思路:改造开源数据挖掘模型库,并运用Hadoop等并行计算框架; 建设和运维成本高昂: (1)问题:传统数据库和分析软件进行海量数据分析将导致天价软件授权许可费用...从最初到现在,Hadoop系统在7年中开发完成了一系列重要子项目,已经形成了一个涵盖数据存储、管理和分析功能较为完整数据生态系统,成为大数据存储与处理领域地位最重要、应用最广泛开源框架。...数据挖掘算法编程复杂度和计算复杂度都非常大,往往称为制约分析项目按期完成瓶颈,精细化运营分析平台利用支持Hadoop并行计算框架开源数据挖掘模型数据库Mahout,实现了数据挖掘算法快速实施和高效表现

    2.7K90
    领券