Kafka使用数据压缩,最高可提升约几十倍吞吐量。数据压缩不仅可节省存储空间,还可用于提升网络传输性能。这种使用压缩提升系统性能的方法,不仅在MQ使用,日常开发也可。比如传输大量数据或要在磁盘、数据库中存储较大数据,这些情况下,都可考虑使用数据压缩提升性能,还能节省网络带宽和存储空间。
数据压缩是保留相同或绝大部分数据前提下减小文件大小的过程。它的原理是消除不必要的数据或以更高效的格式重新组织数据。在进行数据压缩时,你可以选择使用有损方法或无损方法。有损方法会永久性地擦除掉一些数据,而无损方法则能保证持有全部的数据。使用哪类方法取决于你要让你的文件保持多大的精准度。
存储引擎是一个图数据库的核心组件,它负责数据在磁盘中的存储和检索。对于处理大量节点和边的场景,以下存储引擎可以考虑使用:
数据压缩是提高 Web 站点性能的一种重要手段。对于有些文件来说,高达 70% 的压缩比率可以大大减低对于带宽的需求。随着时间的推移,压缩算法的效率也越来越高,同时也有新的压缩算法被发明出来,应用在客户端与服务器端。
综上所述,ClickHouse提供多种压缩算法和压缩字典技术来节省存储空间。在选择压缩算法和压缩字典技术时,需要根据数据的特性、压缩率、压缩与解压缩速度以及查询性能等因素进行综合考虑。
脑图暂时地址:https://twilight-fanyi.gitee.io/mind-map/
综上,选择合适的压缩算法需要根据数据的特点和需求来权衡压缩比和压缩速度,同时考虑系统资源和数据类型等因素。在实际应用中,可以尝试使用不同的压缩算法,通过实验和性能测试来选择最佳的压缩算法。
点击关注公众号,Java干货及时送达 近日,国际电气与电子工程学会(Institute of Electrical and Electronics Engineers,简称 IEEE)宣布,授予 IEEE 终身 Fellow Jacob Ziv 2021 年度 IEEE 荣誉勋章。 Jacob Ziv 这位如今已 90 岁的前辈,是一位以色列科学家,他开发了通用无损压缩算法 Lempel-Ziv,为后来的 GIF、PNG 和 ZIP 文件的开发奠定了坚实的基础。 1、无损压缩算法发展史 20 世纪 70
近日,国际电气与电子工程学会(Institute of Electrical and Electronics Engineers,简称 IEEE)宣布,授予 IEEE 终身 Fellow Jacob Ziv 2021 年度 IEEE 荣誉勋章。
ClickHouse通过列式存储、数据压缩算法、数据字典压缩、稀疏列压缩以及数据分区和分布式存储等创新技术和策略,实现了高效的数据压缩和存储。这使得ClickHouse在处理大规模数据和高吞吐量查询时具备了出色的性能。
0写在前面 web前端在越来越多的Hmtl5游戏 web App的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及Html5线上有损图像压缩,无损数据压缩方案等运用。 web项目需求中有很多资源压缩优化有很多不错的方案 比如针对文本js的compress 以及服务器gzip,比如sprite雪碧图+png压图。 在越来越多的Hmtl5游戏 webApp的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及H
近日,90 岁的 IEEE 终身 Fellow、以色列科学家 Jacob Ziv 因其「对信息论和数据压缩技术的重要贡献和杰出研究领导地位」获得本年度的 IEEE 荣誉勋章。
数据压缩是通过一系列的算法和技术将原始数据转换为更紧凑的表示形式,以减少数据占用的存储空间。数据解压缩则是将压缩后的数据恢复到原始的表示形式。
本文对数据压缩的「前世今生」进行简要的回顾,重点分析基于深度学习的有损压缩、无损压缩方法,对基于深度学习的数据压缩进行了探讨和展望。
现代的网页通常包含了由大量的HTML, CSS和JavaScript代码编写的图片、视频或其他大型文件数据,导致了网页打开的速度很慢。如果能有一种好的压缩算法将这些内容和数据进行压缩后传输,那么用户只需要等待很短时间就可以完全加载整个页面上的内容。
压缩算法是一种通过减少数据量来节省存储空间或传输数据的技术。压缩算法可以分为两种类型:有损压缩和无损压缩。 有损压缩算法会牺牲一定的数据精度或质量,在压缩数据的同时丢失一些信息。这种算法适用于音频、视频等多媒体数据,例如JPEG和MP3等格式。 无损压缩算法则能够完全还原原始数据,不会造成数据丢失。这种算法适用于需要准确还原数据的场景,如文档、代码等,例如ZIP和GZIP等格式。 常见的压缩算法包括哈夫曼编码、Lempel-Ziv算法、Run-Length Encoding(RLE)等。这些算法通过不同的方式对数据进行编码和解码,以实现数据压缩和解压缩的目的。
“智能压缩”按照又拍云的说法是,同时支持 Gzip 和 Brotli 压缩算法。根据用于浏览器开启自动选择不同压缩方式。
在早期,MongoDB主要使用的是MMAPv1存储引擎。基于内存映射文件的数据管理方式,MMAPv1在某些特定场景下表现出色。然而,随着数据量的增长和复杂应用场景的增多,MMAPv1在大量写入操作下的性能瓶颈逐渐显现。
最近接触到一些海量数据存储的需求,为了解决这样的需求,一个想法是对数据进行一定程度的聚合。在应用层的聚合方式,这里不展开。但是让我联想到的是以前学习 prometheus tsdb的时候接触到的压缩技术。即使本质上来讲,应用层的数据聚合,就是一种数据压缩技术。而 tsdb 使用的 gorilla 技术令人印象深刻。有兴趣的可以详细看一下 prometheus 作者的这篇博客, 以及其使用的技术 gorilla 的 paper. 简而言之 prometheus 的 tsdb 简洁强大,受益于其高效的压缩【gorilla 平均能压缩 16 byte samples to an average of 1.37 bytes】和查询效率,其单机的设计并没有影响他在众多场景中的广泛使用。
大数据(Big Data),又称为巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理的时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
列存储和行存储是两种常见的数据库存储方式,它们在数据存储和查询方面有着不同的特点和优势。
在智能工厂逐渐推广应用中,数字化信息的数据量相当庞大,对存储器的存储容量、网络带宽以及计算机的处理速度都有较高的要求,完全通过增加硬件设施来满足现实需求是不可能的,必须采用有效的压缩技术实现数据在网络中的轻量传输。
ClickHouse提供了多种压缩算法来满足不同场景的需求,用户可以根据数据类型和性能要求选择适当的压缩策略。
MergeTree表引擎是ClickHouse中一种用于存储和处理大规模数据的引擎,它支持合并和压缩数据以节省磁盘空间。
当我们在处理数据压缩或者解压缩的过程中,有时会遇到一个错误消息:"Cause: invalid code lengths set"。这个错误通常与Huffman编码相关,表示我们在使用Huffman编码进行数据解码时遇到问题。
TinyLog表引擎适合处理大量小型日志数据,例如日志文件、事件日志等。这些数据一般按照时间顺序进行写入和查询,而且很少需要进行复杂的查询操作。
大家好,又见面了,我是你们的朋友全栈君。列存储,作为一种针对数据查询和数据分析设计的数据存储策略,在“大数据”越来越普及的今天可以说是相当地火热。相较于行存储,列存储的最大优势有二,其一就是查询涉及到数据库的哪几个列就读哪几个列,不读一点与查询不相关的列,大大减少了数据的读取,其二就是数据库数据分为多个独立的列来存储,相同数据类型的数据连续存储在一起,易于数据压缩,而这再次减少了数据的读取。以上正是列存储在处理数据查询和数据分析方面的天然优势,其中也有很多值得探讨的东西。关于前者,本博主涉其未深,不便胡说,倒是近日通过阅读些许文章晓得了几种列存中的数据压缩算法,可以写出来与众看客们分享一二三点。
数据结构从逻辑结构上可以分为:集合、线性表、树、图 集合中常用的数据结构是背包等。 线性表包括栈、链表、队列等。 树包括堆、二叉树、哈夫曼树等。 图包括有向图、无向图、最小生成树、最短路径等(就职于高德地图的算法工程师,图的知识必须完全掌握(ง •̀_•́)ง)。 背包、栈、链表和队列在之前的一篇博文《基础大扫荡——背包,栈,队列,链表一口气全弄懂》中介绍了一下。二叉树和堆在《面向程序员编程——精研排序算法》中的堆排序部分仔细介绍过。 图若在未来有机会用到我会去研究一下,目前为止我的经历中用到图结构
谈到数据仓库, 必然都会涉及海量历史数据, 但是对于历史数据有个共识, 就是越近的数据访问频率越高, 越久远的数据访问频率越低。
Huffman压缩算法是一种基于字符出现频率的编码算法,通过构建Huffman树,将出现频率高的字符用短编码表示,出现频率低的字符用长编码表示,从而实现对数据的压缩。以下是Huffman压缩算法的详细流程: 统计字符频率:遍历待压缩的数据,统计每个字符出现的频率。 构建优先队列:将每个字符及其频率作为一个结点放入优先队列(或最小堆)中,根据字符频率构建一个按频率大小排序的优先队列。 构建Huffman树:不断地从优先队列中取出频率最小的两个结点,合并为一个新结点,并将新结点重新插入到优先队列中,直到队列只剩下一个结点,即Huffman树的根结点。 生成Huffman编码:通过遍历Huffman树,从根结点到每个叶子结点的路径上的左右分支分别对应编码0和1,根据路径生成每个字符的Huffman编码。 压缩数据:根据生成的Huffman编码,将待压缩数据中的每个字符替换为对应的Huffman编码,得到压缩后的数据。 存储压缩表:将字符与对应的Huffman编码关系存储为压缩表,以便解压缩时使用。 存储压缩数据:将压缩后的数据以二进制形式存储。 在解压缩时,需要根据存储的Huffman编码表和压缩数据,使用相同的Huffman树结构进行解码,将压缩数据解压缩成原始数据,并输出原始数据。 Huffman压缩算法的优势在于可以根据数据的特征自适应地确定编码,使得出现频率高的字符拥有更短的编码,从而实现高效的数据压缩。然而,Huffman算法对于小规模数据压缩效果不佳,适用于处理较大规模的数据压缩。
WebP 的优势体现在它具有更优的图像数据压缩算法,能带来更小的图片体积,而且拥有肉眼识别无差异的图像质量;同时具备了无损和有损的压缩模式、Alpha 透明以及动画的特性,在 JPEG 和 PNG 上的转化效果都相当优秀、稳定和统一。
本文将简单介绍下JPEG算法的实现流程,包括图像分割、颜色空间转换、DCT、Quantization、Huffman coding等。 JPEG概述 图像压缩很重要。有这么几种压缩算法: JPEG(非
以上是 Java 处理大型数据集的一些解决方案,每种解决方案都有适合的场景和使用范围。具体情况需要结合实际的业务需求来选择合适的方案。
1 压缩 一般来说,计算机处理的数据都存在一些冗余度,同时数据中间,尤其是相邻数据间存在着相关性,所以可以通过一些有别于原始编码的特殊编码方式来保存数据, 使数据占用的存储空间比较小,这个过程一般叫压缩。和压缩对应的概念是解压缩,就是将被压缩的数据从特殊编码方式还原为原始数据的过程。 压缩广泛应用于海量数据处理中,对数据文件进行压缩,可以有效减少存储文件所需的空间,并加快数据在网络上或者到磁盘上的传输速度。在Hadoop中,压缩应用于文件存储、Map阶段到Reduce阶段的数据交换(需要打开相关的选项)等情
LZO 是致力于解压速度的一种数据压缩算法,LZO 是 Lempel-Ziv-Oberhumer 的缩写。这个算法是无损算法,参考实现程序是线程安全的。 实现它的一个自由软件工具是lzop。最初的库是用 ANSI C 编写、并且遵从 GNU通用公共许可证发布的。现在 LZO 有用于 Perl、Python 以及 Java 的各种版本。代码版权的所有者是 Markus F. X. J. Oberhumer。 LZO 库实现了许多有下述特点的算法: * 解压简单,速度非常快。 * 解压不需要内存。 *
在数字化时代,视觉数据的爆炸性增长对存储系统提出了更高的要求。数据压缩技术,尤其是针对视觉内容的压缩感知技术,已成为优化存储资源的关键手段。本文将深入探讨视觉数据压缩感知技术的原理、应用案例、面临的挑战以及未来的发展方向。
事接上回,当我继续想办法看懂 Brotli的第一阶段时,发现自己卡住了。毕竟自己的基础不是很好,只能想办法去解决,苦闷了一个下午,没办法,只能去死磕这一阶段参考的几篇论文。而我磕的四篇论文中的第一篇,就是这个—— 《Bicriteria Data Compression》。
MJDK 是基于 OpenJDK 构建的美团 JDK 发行版。本文主要介绍 MJDK 是如何在保障 java.util.zip.* API 及压缩格式兼容性的前提下,实现压缩/解压缩速率提升 5-10 倍的效果。希望相关的经验能够帮助到更多的技术同学。
WebP格式,谷歌(google)开发的一种旨在加快图片加载速度的图片格式。图片压缩体积大约只有JPEG的2/3,并能节省大量的服务器带宽资源和数据空间。Facebook Ebay等知名网站已经开始测试并使用WebP格式。 WebP 在各大互联网公司已经使用得很多了,国外的有 Google(自家的东西肯定要用啦,Chrome Store 甚至已全站使用 WebP)、Facebook 和 ebay,国内的有淘宝、腾讯和美团等。 Webp优势: 更优的图像数据压缩算法 更小的图片体积 肉眼识别无差异的图像质量
用于目标检测、跟踪和分割的3D点云数据的自动处理是人工智能和数据科学领域的最新研究趋势,旨在解决自动驾驶落地的不同问题并获得实时性能。
这个系列将结合C/C++介绍无损压缩编码的实现,正如Charles Petzold在<CODE:Hidden Language of Computer Hardware and Software>里所表达出来的意思一样,计算机最本质的能力就是将各种信息通过电路的开合转换成为一系列的数字,然后对其按照一定的规则进行编码,利用这些编码记录一些动作或者数据,完成人们想要的功能。计算机的指令是一种编码,数据也是一种编码,正如人类用各自民族特有的符号组成自己的语言一样,计算机也是依靠着编码形成了自己的语言
在 Go Web 编程中,压缩响应可以帮助我们减少网络传输的数据量,从而提高应用程序的性能和响应速度。压缩响应可以通过减少网络带宽、缩短响应时间等方式,从而提高 Web 应用程序的性能和用户体验。在 Go 中,我们可以使用中间件来实现压缩响应的功能。
简单的说,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。
2、确切性,算法的每个步骤都必须确切定义。 3、可行性,特定算法须可以在特定的时间内解决特定问题。
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 无损压缩鼻祖去世了,享年86岁。 他就是Abraham Lempel,来自以色列的科学家。 正是因为他和同事发明的LZ77/LZ78压缩算法,才有了Zip、GIF、PNG、TIFF、MP3、PDF等直到今天还在流行的文件格式。 他生前曾就职的的以色列理工学院评价他为“学院成立100年来最伟大的研究员之一”,并称很少有科学家“像他一样在技术发展以及我们的日常生活领域中都产生了如此大的影响”。 无数网友为他的离世哀悼。 有人还表示: 我的研究生论文主
在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的,可以使用压缩来节省我们的MR处理的网络带宽。
在实际工作当中,hive当中处理的数据,一般都需要经过压缩,可以使用压缩来节省我们的MR处理的网络带宽
Google 认为互联网用户的时间是宝贵的,他们的时间不应该消耗在漫长的网页加载中,因此在 2015 年 9 月 Google 推出了无损压缩算法 Brotli。Brotli 通过变种的 LZ77 算法、Huffman 编码以及二阶文本建模等方式进行数据压缩,与其他压缩算法相比,它有着更高的压缩效率。
简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。(来源:homas H. Cormen, Chales E. Leiserson 《算法导论第3版》)
领取专属 10元无门槛券
手把手带您无忧上云