☞【实践】数据可视化技术指南(附加视频) 转自:36大数据 图为:美国立法程序 大数据是时下热议的话题,伴随着大数据,同样已经激增的数据可视化方法和呈现形式,让大家意识到数据量的庞大,并不是所有的数据
大数据是当下最火爆的话题之一。随之而来的,是数据可视化技术的持续发展,它用来展现和阐释大规模的数据。但是数据可视化技术并非千篇一律。 数据可视化是展现数据的最强大机制之一,技术上的优势也为其创造了独特
数据可视化,对于很多人来说,并不是高不可攀和陌生的东西,无论是否是数据行业从业者,在日常的工作和汇报当中,都不免会使用到各种图表来直观的呈现数据。
数据可视化是将数据转化为图形、图表和可视元素的过程,旨在帮助人们更好地理解数据、发现模式并得出洞察。在信息时代,数据可视化已经成为解决复杂问题、支持决策制定和传达信息的不可或缺的工具。本文将深入探讨数据可视化的重要性、不同类型的可视化方法、最佳实践以及如何有效地利用数据可视化来解锁数据的潜力。
最近在项目上常常听到这样的话:“我想要一个酷炫的数据大屏”,“设计一定要有科技感”,“这个可视化设计没有重点”……每当听到这些需求,作为设计师一般都是欲哭无泪的。到底什么叫酷炫有科技感?客户理解的数据大屏什么样?是数据还是可视化出了问题?? 这篇文章将会结合最近在数据可视化项目上的一些经历,从设计的角度,聊一聊什么是数据可视化,为什么需要可视化设计,以及该从何处着手来设计一个数据可视化平台。 1. 什么是数据可视化设计?(WHAT) 在聊如何设计数据可视化平台前,想先聊一下我所理解的数据可视化。“数据可视化
数据可视化是以图表和图形的形式呈现数据,多个可视化和信息位的组合仍然被称为信息图表。而数据可视化工具就是生成这种呈现的软件。数据可视化为用户提供了交互式探索和分析数据的直观手段,使他们能够有效地识别有趣的模式、推断相关性和因果关系,并支持意义构建活动。
大数据时代一个显著特征就是数据可视化的崛起。作为数据最上层的展现环节,数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以意义;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。 在大数据的推动下,数据可视化的内涵和外延都有了明显的变化,逐渐由单纯的展现演变为报表、分析和展现的综合体,并且落地到云端和移动端。主流的数据可视化既包括R、D3.js、Processing.js等开源的、可编程的工具,也
随着数据量的快速增长和对数据洞察力的需求日益增强,数据可视化成为了数据科学和分析领域中至关重要的一部分。Python作为一种功能强大、灵活且易于学习的编程语言,拥有丰富的数据可视化库和工具,使得开发者能够轻松地创建出令人印象深刻的图形。
数据可视化是将信息转换为可视化上下文(例如地图或图形)的实践,以使人脑更容易理解数据并从中获取见解。数据可视化的主要目标是更容易识别大型数据集中的模式、趋势和异常值。该术语通常与其他术语互换使用,包括信息图形、信息可视化和统计图形。
随着计算机技术、物联网技术和现代智能终端技术的发展,大数据时代已经到来。大到企业、政府、媒体部门,小到个人,每天都在进行”读读”。各种各样的复杂数据和信息充斥着人们的眼球。这就需要一种有效的方法从海量信息中提取有用的信息,并能立即产生一定的相关结果,供决策者做出正确的决策。
【大数据100分】冯一村:数据可视化的魅力 主讲嘉宾:冯一村 主持人:中关村大数据产业联盟 副秘书长 陈新河 承办:中关村大数据产业联盟 嘉宾介绍: 冯一村:海云科技创始人 。海云数据是一家做数据可视化的的初创公司。海云数据是“微软创投加速器”第四期入驻的企业。 以下为分享实景全文: 冯一村:大家好,很高兴在微信的平台上和大家来交流。在群里面,大家都是大数据方面的专家,而海云数据还只是一家创业公司,还请大家多多支持。我是海云数据的冯一村。 下面正式进入主题,我们知道大数据的概念已经很火爆了,也看到大家
据可视化是将数据以图形化、可视化的方式呈现,让数据更加直观、易于理解。目前市场上有许多数据可视化工具,本篇文章将为大家推荐30个数据可视化超级工具,并对每个工具的特点进行介绍。
导语| 随着新冠疫情的发展,各个新闻资讯平台及自媒体在疫情的报道上,都在尝试除传统图文报道外的其他形式,以求基于大数据和新技术,能够更加全方位的、详实的、清晰的将事件内容展现给用户。在此期间,数据可视化新闻如疫情地图、短视频等,尤其发挥了重要作用。 · 什么是数据可视化? 数据可视化指的是借助图形化手段,清晰有效地传达沟通数据和信息。通过数据的区别,可以将数据可视化简要分为以下几种类型:统计数据、关系数据、地理空间数据、时间序列数据以及文本数据可视化。 常见的数据可视化呈现方式主
在信息时代,我们面临着海量的数据。然而,这些数据本身并没有意义。为了从数据中获得洞察力和价值,我们需要将其转化为可理解和有意义的形式。这就是数据可视化的重要性所在。本文将详细介绍数据可视化的概念、原则、工具以及它如何帮助我们理解和解释数据。
“数据可视化,不是单纯的数据呈现,更是对行业的理解,对使用感受的掌控,对专业数据的整理分析,我们精益求精,只为让决策更加高质高效。”——数字冰雹副总经理丁冬 来源:数据猿 记者:张艳飞 春夏 “数据
在业务设置中,数据可视化工具可以帮助可视化业务流程生成所有数据,并创建仪表板来跟踪几乎所有的内容。数据可视化工具还可以完美地使用特定事件、项目、分析和信息的数据创建图形。
现在市场上有非常多的商业智能BI产品,几乎都在着重宣传其数据可视化功能的强大,给人造成一种商业智能BI就是数据可视化的印象。事实上商业智能BI并不等于数据可视化。要探究商业智能BI和数据可视化的区别,我们先要分别弄清楚这两个概念。
数据可视化在Python中是一个非常重要的主题,它可以帮助我们更好地理解和分析数据。无论是探索数据的特征,还是向其他人展示数据的结果,数据可视化都起到了关键作用。然而,在进行数据可视化时可能会遇到一些常见问题。本文将为您分享在Python中进行数据可视化时的常见问题与解决方案,并提供实际操作价值。
随着大数据概念的普及与业务数据的爆炸式增长,越来越多的企业已经不满足于Excel的常规操作。
数据可视化的道路上充满了不可见的陷阱和迷宫,最近ClearStory Data的两位数据可视化开发人员分享了他们总结出来的数据可视化开发的7个不宣之秘,普通开发者了解这些方法能提升视野,少走弯路。 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。 类似JavaScript的可视化库如D3.js,Raphaël,以及Paper.js,以及最新浏览器所支持的如Canvas和SVG,以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。 数据可视化如今成为了很多网站项目
大数据可视化的新动态 Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。通过联络、动员中美最顶尖的数据科学家和社会科学家,以及分布在全球的志愿者,我们创造性地践行着我们的使命:为美好生活洞见数据价值。 1 引言 数据可视化是将数据以不同形式展现在不同系统中,其中包括属性和变量的单位信息[1]。基于可视化发现数据的方法允许用户使用不同的数据源,来创建自定义分析。先进的分析集成了许多方法,为了支持交互式
问题:数据可视化的优秀入门书籍有哪些? 问题描述:作为一个深爱着并学习着新媒体设计的学生,我非常感兴趣数据可视化相关知识。我学习绘画设计十几年,对视觉信息敏感,有基本的编程知识。很希望阅读入门级的、适合自己的数据可视化书籍,谢谢。 知乎最多赞同——微澜潮生的回答: 个人感觉国内可能还比较少,可以看下Julie Steele的《数据可视化之美》,里面有一些经典案例的介绍,可作入门;另外向怡宁翻译的《鲜活的数据》也值得一看,关键是介绍了数据可视化处理的具体过程,而且向怡宁翻译的书一向通俗易懂,他翻译的有关交互设
许多数据可视化工作者都提到一件事,就是开发可视化作品变得更简单了,但是效果难以评估。本文翻译自toptal的博文,让我们来看看优秀的可视化实践是如何实现的吧。
本文由CDA数据分析研究院翻译,译者:王晨光,转载必须获得本站、原作者、译者的同意,拒绝任何不表明译者及来源的转载! 人们总是倾向于把数据可视化与大品牌和大型企业联系在一起。Target, Deloitte, GitHub和Time Warner Cable 都使用数据可视化工具来分析和解释有关其客户的信息,使他们能够更好地进行市场定位,制定销售策略,完善内部流程。 对于许多小型企业来说,数据可视化可能在很大程度上只是一个陌生的概念,或者说只是一个时髦新鲜的词汇而不是现实。这些企业大多没有意识到他们可能已经
数据可视化的市场应用正在快速扩张,将复杂的数据用美观且互动的方式呈现出来,已经成为了商业场景中必不可少的部分,也因此越来越多的人开始踏入了数据可视化的学习之路。但相信初入数据领域的朋友们,在起步阶段都会陷入对复杂技能的焦虑中,迟迟不能展开系统性学习。
数据可视化,是指用图形的方式来展现数据,从而更加清晰有效地传递信息,主要方法包括图表类型的选择和图表设计的准则。
数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。Python作为数据分析中最流行的编程语言之一,有几个库可以创建精美而复杂的数据可视化,允许分析人员和统计人员通过方便地在一处提供界面和数据可视化工具而轻松地根据其规范创建可视数据模型!
在数据可视化的研究热潮中,如何让数据生动呈现,成了一个具有挑战性的任务,随之也出现了大量的可视化软件。相对于其他商业可视化软件,Python是开源且免费的,而且具有易上手、效果好的优点。 大家普遍第一次接触到的Python数据可视化库基本上都是Matplotlib。Python还有很多数据可视化库,本文盘点了12款常用的Python数据可视化库,挑选适合自己业务的那一款吧! 深入学习Python商业数据可视化技术,推荐阅读《Python商业数据可视化实战》。 ▼ Python有很多数据可视化库,这些数据可
数据可视化的道路上充满了不可见的陷阱和迷宫,最近ClearStory Data的两位数据可视化开发人员分享了他们总结出来的数据可视化开发的7个不宣之秘,普通开发者了解这些方法能提升视野,少走弯路。 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。 类似Ja vaScript的可视化库如D3.js, Raphaël, 以及Paper.js, 以及最新浏览器所支持的如Canvas和SVG, 以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。 数据可视化如今成为了很
在互联网探索到Seeing Theory开始,感受到了数据可视化对于知识展示的魅力,它能够把令人眼花缭乱的数据以舒服的交互以及视觉效果呈现给学习者。
以上这张图片比较普遍现象的数据链路,如果你是厨师,最重要的肯定是做菜环节,也就分析环节。数据可视化只是最后的摆盘环节。
《可视化组织》的作者菲尔·西蒙在本文中讨论了数据可视化工具和它们改变商业对话的强大力量。大数据可能导致大的混乱,因此要从混乱中梳理清晰的数据,从而发现商业机会,就变得无比的重要。清晰可见的呈现出数据和发现数据的过程一样重要。通过可视化的工具创建热图、数据关系树图以及空间地理图,能够帮助CEO在几分钟内通过可视化的方式解释一个销售趋势。可视化能够把数据转换成对话。这一课题在菲尔·西蒙的即将出版的新书《大到无法忽视》中也被提及,《可视化组织:数据可视化,大数据,需求更优决策》(Wiley出版社,2014年)也
数据可视化,是数据分析师日常工作中绕不开的内容之一。在工作中,如果只是以完成业务方的需求为目的,其价值会被大大缩水。本节,想和大家聊聊小火龙对于可视化的一些思考,希望你能够有所收获。
数据可视化在当下信息时代已经成为炙手可热的话题,而 B/S 化趋势,也使得许多大屏应用上在网页端出现,今天给大家分享一套不一样风格的大屏页面,与传统深蓝色不同,这次采用了暗红色设计,搭配粉色及黄色,加入了一些工业元素,让页面有别具一格的效果。而 Hightopo 独特的自适应机制,也解决了大屏需要针对分辨率设计的困扰,达到了可以一页用多屏的效果。
本文从大数据应用出发,讨论数据可视化在大数据时代所面临的一系列挑战,并重点介绍AutoVis针对这些挑战所做尝试及其体系架构、关键技术和功能特点。
大数据时代,数据是非常重要的,怎样把它的重要之处展示出来成为我们需要掌握的既能,这也就是本文要讲的重点——数据可视化。
大家好,我是小团,是数据原创自媒体 “城市数据团”众多数据分析师之一,目前主要担任数据可视化的工作。
在数据科学领域,数据可视化无疑是当今的首要词汇。无论想分析哪些数据,进行数据可视化似乎都是必要的步骤。但是很多人没有特定的数据可视化概念,也不知道如何实现它。所以,今天将带您了解数据可视化的定义,概念,实现过程和工具。
经常在网络上看到这样的问题:“从零开始学习数据可视化,需要怎么开始?”《Data at Work》一书的作者Jorge Camoes在一次演讲中,提出了“数据可视化思考者”这一概念,并分享了他的12个想法。我们从中选取了最具价值的8个,进行了编译。
本文介绍了数据可视化的重要性和用途,通过实际案例讲解了数据可视化的实现方法,并介绍了几种主要的数据可视化工具。
关于数据可视化的定义有很多,像百度百科的定义是:数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。这种定义可能显得比较晦涩难懂。在大数据分析工具和软件中提到的数据可视化,就是利用运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像。
【导读】 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。类似JavaScript的可视化库如D3.js, Raphaël, 以及Paper.js, 以及最新浏览器所支持的如Canvas和SVG, 以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。然而, 对于数据可视化的开发者来说, 依然有很多挑战要去面对。 这些迎接这些挑战的方法, 则是很多专业的数据可视化开发者不愿意让别人知道的秘密。 ClearStory Data的两位数据可视化开发人员Nate Argri
前言 今天,大数据已无所不在,并且正被越来越广泛的被应用到历史,政治,科学,经济,商业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。通过本系列的前面几篇文章,我们已经了解了数据可视化的必要性,而目前市面上也已经具备了非常多成熟的BI绘制工具,如画面,QlikView的的和魔镜等等。虽然这些工具正在变得越来越自动化,然而,随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多科学可视化的需求产生,地图,3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能
本文主要讲述了如何利用云图这个数据可视化工具进行数据可视化和图表的生成,通过案例展示了云图的强大之处。文章还介绍了云图的一键式数据可视化功能,以及丰富的图表类型和配色方案,让用户可以快速生成各种类型的图表,满足不同场景的需求。同时,文章还介绍了云图的多种模板,让用户可以直接在模板上进行修改尝试,方便快捷。
数据可视化到底是什么?需要具备什么样的能力?工作内容应该有哪些?其实数据本身没有意义,只有对实体行为产生影响时才成为信息。
本文将给大家介绍一些数据可视化的基础知识。点击阅读原文来访问。 我多次被炫目的数据可视化或信息可视化震惊,在我知道这些图片背后的数据来源和创造历程后,更是为之诧异不止。它涉足制图学、图形绘制设计、计算机视觉、数据采集、统计学、图解技术、数型结合以及动画、立体渲染、用户交互等。相关领域有影像学、视知觉。空间分析、科学建模等。 这是创造性设计美学和严谨的工程科学的卓越产物。用极美丽的形式呈现可能非常沉闷繁冗的数据,其表现和创作过程完全可以称之为艺术。所以我翻译了来自SM上的3篇数据可视化和信息图形的文章,主要是
你想了解更多关于数据可视化的理论知识和历史背景吗?你想受到令人惊叹的可视化示例的启发吗?你希望能够创建更有效的可视化效果吗?或者你是否有兴趣从权威部门获取有关数据可视化的信息吗?
我刚开始学习Python的时候,找了一本Python书籍,一边阅读,一遍抄写书中代码,并且对代码进行不同的“折腾”,充分地发挥自己的想象力,多问几个这段代码可以用来做什么,可以解决什么问题。
领取专属 10元无门槛券
手把手带您无忧上云