首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据存储介质销毁:护航数据安全的最后一公里

"鹅厂网事"由深圳市腾讯计算机系统有限公司技术工程事业群网络平台部运营,我们希望与业界各位志同道合的伙伴交流切磋最新的网络、服务器行业动态信息,同时分享腾讯在网络与服务器领域,规划、运营、研发、服务等层面的实战干货,期待与您的共同成长。 网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值! 随着互联网的快速发展,网络化已经深入到人们的方方面面,随之而来的是各类涉密敏感数据几何倍的增长。而近年来信息安全事件频频发

08
您找到你想要的搜索结果了吗?
是的
没有找到

爬虫数据存储技术比较:数据库 vs. 文件 vs. NoSQL

事件描述: 在进行网络爬虫开发时,数据存储是一个关键的环节。不同的数据存储技术有着各自的特点和适用场景。本文将比较常用的数据库、文件和NoSQL三种数据存储技术,以帮助开发者选择合适的存储方式。 亮点介绍: 1.数据库:提供结构化数据存储和能查询的效高力。 2.文件:简单易用,适合小规模数据存储和快速读写。 3.NoSQL:灵活的数据模型和可扩展性,适用于大规模数据存储和分布式系统。 背景介绍: 数据库是一种常见的数据存储方式,如MySQL、PostgreSQL等,它们提供了结构化数据存储和强大的查询能文件。力存储是一种简单的存储方式如,CSV、JSON等,适用于小规模数据存储和快速读写。NoSQL是一类非关系型数据库,如MongoDB、Redis等,它们具有灵活的数据模型和可扩展性。 示例代码: 下面是Python的pymysql库的实现参考

03

事务处理的数据存储

在上篇文章我们讨论了数据模型,今天试着讨论更基础的数据存储和搜索。数据存储根据开发者使用,可以分为一般的事务处理和数据分析,因为这两者面临的情况不一样。事务处理聚焦于快速的存储和搜索少量的数据,但是数据分析需要读取大量的数据去进行聚合,而不怎么考虑读取花费的时间。后者一般称为数据仓库。 首先我们先看看传统数据库和大部分NoSQL的数据存储引擎。这个实际上分为两个流派,一个是基于日志结构,主要使用了LSM树,另一个是基于OS的页的结构,就是所谓的B树。这么说可能比较难懂。让我们想象一下,假设你有一个excel,里面存储了一条数据a,b,如果我们想查询a,我们可以遍历excel找到满足以a开头的数据a,b。这就是一个简单的数据库,存储数据时,只要简单的添加在下一列。查找时进行遍历,找到符合条件的。让我们想想这会有什么问题。对于数据存储,我们只需要简单的添加数据,对于磁盘这样极有效率,当然实际上的数据库还要考虑并行处理、磁盘存储空间不足等等情况。存储数据的file,就是所谓的log。另一方面,对于搜索数据,这个效率就相当慢了,因为每次搜索数据都需要遍历整个文件,时间复杂度是线性的增长,这时候我们就需要索引了。显然索引对于整个数据存储文件而言,是额外的存储结构,维护索引结构会牺牲write的效率。 对于索引结构,首先想到的是key-value结构。例如对于数据a,b c,f,d这种数据,我们可以用一个索引a,0 b,3这种hash map的形式0和3代表着文件的offset,我们查找数据的时候,先去hash map找到对应的key值,获得offset,我们就能获得key值对应的value。这听起来很简单,然而这就是Bitcask的实现方式。这个索引结构是完全存储在内存当中,如果超出内存的话,就会放在磁盘上。如果数据一直在增长,磁盘空间肯定会有不足的那一刻,解决办法就是将数据拆分为固定大小的segment,以及在合适的时候,合并segment,根据时间戳,保留最新的value值,重新写入新的segment,对旧的进行删除。对于实际的工程,我们还需要考虑 1.文件存储的格式,一般而言应该是以bytes存储 2.删除数据时,应该加上一个标签,比如tombstone,在合并segment时,对数据进行删除 3.数据库崩溃重新恢复,Bitcask使用的是快照的方式在磁盘保存索引结构 4.并发的写入数据,这个需要检查点来处理数据写入时数据库崩溃 5.并发控制,因为文件的immutable,所以并发控制相当简单。 但是这个依然存在问题,让我们想想,那就是hash table必须存储在内存中,这个对于大数据时很不友好,即使你是存储在磁盘上。并且对于范围查找很不友好,因为你需要遍历所有key去查找一个范围内的一个key。 为了解决范围查找,人们又提出了在创建索引时,我们可以按照key值进行排序,这样的存储方式叫做SSTable。这样有下面的几个好处,合并segment变得更有效率了,因为你只需要读取开始的key和结束的key就可以了。在保存索引时,也不需要将所有的key存储在内存里,只需要保存每个segment的开始key和结束key。读取数据时,也不需要遍历所有的key值了。那么对于维护索引呢?我们在写入数据时,会先写入memtable(存储在内存的例如红黑树之类的数据结构)。当memtable超过某个阈值时,会将memtable写入到磁盘的segment中。在读取数据时,我们会首先在memtable中查找数据,然后再根据时间逐步读取segment。每隔一段时间,后台进程便会合并segment,清理垃圾数据。这样处理的唯一问题,就是memtable遇到服务器崩溃。我们可以牺牲一部分write的效率,生成一个独立的log去立马保存写入的数据,这个log的唯一用途就是防止memtable的丢失。 上面的就是现在HBase、LevelDB、Lucene这些使用的LSM树结构。对于其的优化,目前可以使用布隆过滤器、size-tiered等方式去优化读取和合并segment。除了LSM树,目前还有一个广泛使用的索引,那就是B树。 B树主要是利用了操作系统的页结构,将数据拆分成一个固定尺寸的block块,使用存储address和location,类似于指针的方式存储数据。具体细节不多说,网上的文章一大堆。我们需要考虑的是负载因子和二叉树的平衡。对于每次的写入和修改数据,我们都需要找到key值在系统里对应的address去修改数据,重新写入,同样为了防止数据崩溃,一般的数据库会使用预写日志(WAL)去保存每一次数据的修改和写入。 除了这些索引,还有所谓的二级索引。这个类似于倒排索引。不仅如此,还有基于列的存储方式,这个大多是为了数据仓库服务的。

03

黑科技 | 分子存储领域大突破,可让大量数据存储于单个分子

随着越来越多的信息进入云计算,未来我们将越来越依赖大规模的数据存储。 近日,英国曼彻斯特大学的研究团队在分子数据存储领域取得了重要进展,他们实现了将大量数据有效存储在单个分子中。 目前,数据的存储介质主要是磁盘,通常,我们使用10至20纳米尺寸的磁性颗粒来编码单位数据,其中磁性颗粒的两极分别表示1和0,而之所以可以利用磁性物质实现存储,是因为磁性颗粒存在磁滞现象。 磁滞现象,即当外加磁场施加于磁性物质时,其原子的偶极子按照外加场自行排列,即使当外加场被撤离,部分排列仍保持的现象。 一直以来,科学家在开发更小

00

TDD(测试驱动设计):通过大量测试寻找最优解决方案

这两天,我一直在做“测试人员”,不过跟一般的测试人员不同的是,我是在写代码做测试,这些代码是我头脑中的某种设计理念的表示,我坚信,只有不断的“测试”我的这些设计,才能够找到最优的解决方案。     最近我在设计开发一个“wcf邮件通信系统”,目的是为了在两个不能够直接通信的环境中使用邮件作为消息通道,所以系统的关键之一就是邮件收发的效率和稳定性,怎么样才能够使得邮件内容最小?哪种格式的邮件内容处理最快?哪种方案能够消耗最小的cup资源而又占用合适的内存大小?下面是我的一个测试过程: 1,对象序列化测试

07
领券