现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
如果这几个问题你理解的还不是很清楚,那么请仔细阅读一下下面的内容。围绕这几个问题一一进行展开。
在 AXIS 总线数据输入阶段, DataMover 的 tready 信号并不会总处于高电平的接收就绪状态,会在一段时间内为低电平,这就要求主机在 tready 为低电平时,hold 住当前要传输的数据,直到 tready 恢复高电平。
被Go语言称为寄存器宽度的这个值,就可以理解为机器字长,也是平台对应的最大对齐边界,而数据类型的对齐边界是取类型大小与平台最大对齐边界中的较小的那个
什么是对齐,以及为什么要对齐: 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。 对齐的作用和原因: 各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来
虽然所有的变量最后都会保存到特定的地址内存中去,但是相应的内存空间必须满足内存对齐的要求,主要基于存在以下两个原因:
我们在做项目过程中,常常听到“对齐”这个词,“对齐”简单理解就是某个量值可以被某个颗粒度整除。
一、什么是对齐,以及为什么要对齐: 1. 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。 2. 对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况, 但是最常见的是如果不按照适合其平台的要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低 字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。 二、对齐的实现 通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。 但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。 对齐的算法: 由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。 设结构体如下定义: struct A { int a; char b; short c; }; 结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。 所以使用sizeof(strcut A)值为8。 现在把该结构体调整成员变量的顺序。 struct B { char b; int a; short c; }; 这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。 下面我们使用预编译指令#pragma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。 #progma pack (2) /*指定按2字节对齐*/ struct C { char b; int a; short c; }; #progma pack () /*取消指定对齐,恢复缺省对齐*/ sizeof(struct C)值是8。 修改对齐值为1: #progma pack (1) /*指定按1字节对齐*/ struct D { char b; int a; short c; }; #progma pack () /*取消指定对齐,恢复缺省对齐*/ sizeof(struct D)值为7。 对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。 这里面有四个概念值: 1)数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。 2)指定对齐值:#pragma pack (value)时的指定对齐值value。 3)结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。 4)数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中较小的那个值。 有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是 数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整 数倍,结合下面例子理解)。这样就不难理解上面的几个例子的值了。 例子分析: 分析例子B; struct B { char b; int a; short c; }; 假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指 定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为 4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空
链接: https://www.ijcai.org/proceedings/2018/0611.pdf
类对象模型是一种编程概念,用于描述和实现面向对象编程(OOP)中的类和对象。在这个模型中,类定义了对象的结构和行为,包括数据成员(属性)和成员函数(方法)。对象是类的实例,具有类的所有属性和方法。类对象模型支持封装、继承和多态等OOP特性,使得代码更加模块化、可重用和易于维护。通过类对象模型,程序员可以创建复杂的软件系统,提高开发效率和代码质量。
元素是按照定义顺序一个一个放到内存中去的,但并不是紧密排列的。从结构体存储的首地址开始,每个元素放置到内存中时,它都会认为内存是按照自己的大小(通常它为4或8)来划分的,因此元素放置的位置一定会在自己宽度的整数倍上开始,这就是所谓的内存对齐。
核心: 1.每个元素的首地址偏移量必须能整除该元素的长度。 2. 整个结构体的长度必须能整除最长元素的字节数。
结构体字节对齐 在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何 变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排列, 而不是简单地顺序排列,这就是内存对齐。 计算结构变量的大小必须讨论数据对齐的问题。为了使CPU存取的速度最快(这同CPU取数操作有关),c++在处理数据时经常把结构变量中的成员的大小按照4或
字节对齐是我们初学C语言就会接触到的一个概念,但是到底什么是字节对齐?对齐准则又是什么?为什么要字节对齐呢?字节对齐对我们编程有什么启示?本文将简单理一理字节对齐的那些事。
大家好啊,不知道看了网管在上周的文章Go指针的使用限制和unsafe.Pointer突破之路,你们有没有感觉Golang 比之前想的还好用呢?确实能直接读写内存,很多以前觉得无能为力的事情就不再是问题了,比如那些没对外开放只能在开源包内部用的结构体字段这下我们都有办法抓到了,起码能给程序调试带来不小的速度提升。
在《小许code:Go内存管理和分配策略》这篇分享中我们了解到Go是怎么对内存进行管理和分配的,那么用户的程序进程在linux系统中的内存布局是什么样的呢?我们先了解一下基础知识,然后再看Go的内存对齐。
大语言模型(LLMs)虽展现出了强大的能力,但也可能产生不可预测和有害的输出,例如冒犯性回应、虚假信息和泄露隐私数据,给用户和社会造成伤害。确保这些模型的行为与人类意图和价值观相对齐,是一个紧迫的挑战。
内存对齐简单来讲就是把一个数据存放到内存中,其内存的地址要与数据自己大小为整数倍。 处理器在执行指令去操作内存中的数据,这些数据通过地址来获取。 当一个数据所在的地址和它的大小对齐的时候,就说这个数据对齐了,否则就是没对齐。
在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题。从理论上讲,对于任何变量的访问都可以从任何地址开始访问,但是事实上不是如此,实际上访问特定类型的变量只能在特定的地址访问,这就需要各个变量在空间上按一定的规则排列,而不是简单地顺序排列,这就是内存对齐。 内存对齐的原因: 1)某些平台只能在特定的地址处访问特定类型的数据; 2)提高存取数据的速度。比如有的平台每次都是从偶地址处读取数据,对
Author:bakari Date:2012.8.26 数据对齐实际上是内存字节的对齐,今天偶然翻开自己以前做的笔记,发现做了好多的题,但现在对于我来说觉得很陌生。上网查了一下数据对齐的原因和方式,现在把它整理出来以备之后的学习复习巩固。 一、什么是数据对齐 1、现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个
现有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。就像审稿意见不仅仅是一个分数,还包括许多接受或者拒绝的理由。
节表重要成员都标红了.我们知道.PE文件有两种状态.一种是内存状态.一种则是文件状态.
#pragma pack (n)这个语句用于设置结构体的内存对齐方式,具体作用下面再说。在linux gcc下n可取的值为:1,2,4,当n大于4时按4处理。如果程序中没用显试写出这个语句,那么在linux gcc下,它会对所有结构体都采用#pragma pack (4)的内存对齐方式。需要注意的是,在不同的编译平台上默认的内存对齐方式是不同的。如在VC中,默认是以#pragma pack (8)的方式进行对齐。
一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.
C语言中的数据类型可以分为两种:简单数据类型和复杂数据类型,简单数据类型就是我们经常用到的整型(int)、实型(float)、字符型(char)等,复杂数据类型中有结构体(struct)、位段(struct)、枚举(enum)和联合体(union)这几种。
自去年底ChatGPT发布以来,大型语言模型(LLM)的性能极大的吸引了人们的注意力。在此过程中,我们逐渐的开始思考当前LLM发展过程。相比传统的自然语言模型,LLMs为什么能做到如此令人印象深刻的效果?针对该问题,尽管人们争论不断,但一项特别有影响力的进步是执行对齐的能力,这是毋庸置疑的。通俗来说,不管是通过指令信息还是检索信息,「人类已经明白如何训练LLM,使其不仅能够准确预测出下一个单词,而且输出的文本还能满足人们的目标」。
在了解内存对齐之前,先来明确几个关于操作系统的概念,更加方面我们对内存对齐的理解。
原文链接:https://blog.csdn.net/humanking7/article/details/80979517
我们可以看到,两个结构体s1和s2内部的数据都是两个char类型和一个int类型数据,只是存放的顺序不同,其结构体整体的大小竟然发生了改变。这就是结构体内存对齐。
【本文为安富莱电子原创】 本期的知识点要稍微烧点脑细胞,因为字节对齐问题涉及到的地方太多,且无法规避,必须硬着头皮上。 下面要说的每个技术点,其实都可以专门开一个帖子说,所以我们这里的讨论,争取言简意赅,并配上官方文档和实验数据,力求有理有据。如果讲解有误的地方,欢迎大家指正,我们主要讨论M0,M0+, M3,M4和M7内核。 一、引出问题: 字节对齐的含义:4字节对齐的含义就是变量地址对4求余数为0; 8字节对齐就是地址对8求余等于0,依次类推: 比如 uint32_t *p; p=(uint32_t *)0x20000004; 这个地址是4字节对齐。 如果让p去访问0x20000001, 0x20000002,0x20000003这都是不对齐访问。 二、背景知识: 对于M3和M4而言,可以直接访问非对齐地址(注意芯片要在这个地址有对应的内存空间), 因为M3和M4是支持的,而M0/M0+/M1是不支持的,不支持内核芯片,只要非对齐访问就会触发硬件异常。
不是所有硬件平台都能访问任意地址上的任意数据,某些硬件平台只能在某些特定地址处取某些特定的数据,否则就会抛出硬件异常。也就是说计算机在读取内存数据时,只能在规定的地址处读数据,而不是在内存中任意位置都会可以读取的。
在C语言中,默认的对齐数通常是编译器相关的,一般情况下默认对齐数是当前平台最宽基本类型的大小(例如在32位系统上是4字节,在64位系统上是8字节)。
在计算机领域,对于某种特定的计算机设计而言,字(word)是用于表示其自然的数据单位的术语,是用来表示一次性处理事务的固定长度。一个字的位数,即字长。
上面我们讲了,空白区添加我们的代码.但是有的时候.我们的空白区不够了怎么办.所以需要进行扩大节.
谈到内存对齐,早年间玩Java的时候就能偶尔打打交道,为此Java8还提供了个语法糖@Contended来帮助我们解决高速缓存cacheline内存未对齐的伪共享问题。不过Go目前涉及到类似问题,比如内存对齐带来的原子操作的问题还是需要手动处理下,毕竟Russ Cox大佬也发话了
对大型语言模型(LLM)中安全问题的意识日益增强,引发了人们对当前研究工作中的安全性评估的极大兴趣。本研究调查了与llm评估有关的一个有趣问题,即多重选择问题和开放式问题之间的性能差异。我们发现LLM对安全这一复杂概念的理解并不全面,它只记得回答开放式安全问题,而无法解决其他形式的安全测试。我们将这种现象称为假对齐,为解决这个问题,我们提出FAEF框架和两个新指标—一致性分数(CS)和一致性安全分数(CSS),用来联合评估两种互补的评估形式,以量化假对齐并获得正确的性能估计。
大部分 NLP 问题是关于英语语言处理的,英语语言具备优秀的语言技术支持,而同类的支持对于阿尔巴尼亚语、缅甸语、宿务语等语种而言非常有限。弥补不同语种之间的数字鸿沟对于科学和民主都至关重要,同时这也代表了一种巨大的增长潜力。而其关键挑战在于,对齐不同语言的基础语义单元。
Pandas 使用技巧最近连载 5 篇,是时候分析一下它的基本框架。Pandas 使用行索引和列标签表达和分析数据,分别对应 axis=0, axis=1,行索引、列标签带来一些便捷的功能。
既然这样,那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:让占用空间小的成员尽量集中在一起。 如:
位域是指信息在保存时,并不需要占用一个完整的字节,而只需要占几个或一个二进制位。为了节省空间,C语言提供了一种数据结构,叫“位域”或“位段”。
A:这篇论文试图解决的问题是如何在大型语言模型(LLMs)的训练过程中,更有效地与人类偏好对齐。具体来说,它提出了一种名为逐步直接偏好优化(stepwise Direct Preference Optimization,简称sDPO)的方法,用于改进现有的直接偏好优化(DPO)方法。这个方法通过分步使用可用的偏好数据集,而不是一次性使用全部数据,从而在DPO训练框架中使用更精确对齐的参考模型。通过这种方法,论文展示了如何训练出一个性能更佳的最终模型,甚至在某些情况下,其性能超过了参数更多的其他流行的大型语言模型。
训练大型语言模型的最后一步就是「对齐」(alignment),以确保模型的行为符合既定的人类社会价值观。
【新智元导读】在一篇已经被ICCV 2017接收的论文中,诺丁汉大学的研究人员提出了他们号称是迄今最大3D人脸对齐数据集,以及精准实现2D、3D以及2D到3D人脸对齐的网络。研究人员用《我们距离解决2D&3D人脸对齐问题还有多远》为题,首次调查了在所有现有2D人脸对齐数据集和新引入的大型3D数据集上,距离达到接近饱和性能(saturating performance)还有多远。 ImageNet百万级精准标记数据集开启了图像识别新时代,人们也由此意识到,数据跟算法同样重要。为了构建更好的模型和算法,越来越多
为何更改为 4096 字节扇区? 如果您熟悉磁盘结构,就知道磁盘是被分解成扇区 的,大小通常是 512 字节;所有读写操作均在成倍大小的扇区中进行。仔细查看,就会发现硬盘事实上在扇区之间包括大量额外数据,这些额外字节由磁盘固件使用,以检测和纠正每个扇区内的错误。随着硬盘变得越来越大,越来越多的数据需要存储在磁盘的每一单位面积上,导致更多低级别错误,从而增加了固件纠错功能的负担。 解决该问题的一个方法是将扇区大小从 512 字节增加为更大的值,以使用功能更强大的纠错算法。这些算法可使每个字节使用较少的数据,从
可能有人会问:既然代码已经写的清清楚楚——“我们使用的是一个非对齐的地址”——为什么编译器仍然会假装不知道呢?其实编译器并非不知道,如果我们直接这么写:
1. 在大型AI模型开发中实现价值对齐是关键,这有助于减少潜在风险并确保技术产生积极影响。
领取专属 10元无门槛券
手把手带您无忧上云