首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    有没有人,计划开源一套工业级“秒杀”系统架构?

    想要搞透一套架构方案,最根本的方法,就是去实践它。 可是,大部分程序员,遇不到这样的业务,接触不到这样的场景啊,怎么办呢? 有个朋友自动化的搭了一套,能让所有人瞬间体验与调优高并发的秒杀架构,分享给大家! 对于秒杀类业务,系统上能如何优化呢? 方向上,主要有两点: 第一,将请求尽量拦截在系统上游,而不要让锁冲突落到数据库。 传统秒杀系统之所以挂,是因为请求都压到了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超时,访问流量大,下单成功的有效流量小。 第二,充分利用缓存。 秒杀买票,这是一个

    01

    如何解决热点数据更新问题

    一 背景 某个业务线商品开放用户申请免费试用,当某个商品特别吸引人时,比如iPhone6 。肯定有一大波人为了少卖一个肾而疯狂去抢申请资格。更有甚者利用机器人申请注册,于是简单的申请操作变成了秒杀行为。大量请求同时更新数据库中的同一个商品的申请次数,update 操作给表加上行锁,导致后面的请求全部排队等待前面一个update完成,释放行锁后才能处理下一个请求。大量后来请求等待,占用了数据库的连接。一旦数据库连接数被占满,就会导致后来的全部请求因拿不到连接而超时,业务请求出现无法及时处理的情况,数据库系统的RT会异常飙高,业务层由于等待出现超时,app 层的连接耗尽,一系列的雪崩效应! 二 解决方案 从上面的背景分析,解决热点数据并发更新需要注意核心问题: 减少直接对db层数据热点的并发更新,或者提供MySQL 更新同一行的吞吐量。本文从业务和数据库的设计层面来规划.同时也希望大家提更好的解决思路。 1 前端层面 前端是整个流量的入口, 正常业务访问时系统表现平稳,但是当有人恶意请求时,需要加上流控措施,比如常见的 a 需要用户回答问题,填写验证码,移动图像等等,防止或者减少有机器人来恶意请求。 b 页面上采用防止机器人的判断 两秒以内的成功请求一律拒绝。 c 通过设置nginx ,对同一个ip源的请求次数做限制,防止机器人来申请。 优点 有效减少或者防止有人利用机器人恶意请求 缺点 存在一定的误杀率,错杀了正常的请求。 2 应用层 应用程序接收前端前端请求,进行一系列的数据库操作,在我们规避了恶意请求之后如果还是有大量的数据库写访问请求,我们需要 a 对业务做降级 限制接口的调用次数,降低对数据库的请求压力。选择异步更新请求次数,弱化该商品申请次数的展现。类似于阅读次数,申请次数 ,与金额,库存无关的功能点。 b 通过异步更新来避免直接写数据库 。 应用使用分布式缓存(比如Tair/Redis)来存储某项商品的申请次数或者某人的申请次数,以商品id/user_id 或者将where 条件作为key,申请试用人数为value/符合某项具体条件的 count结果为value, 有用户申请成功则更新申请试用人数。不需要查询和实时写数据库,每隔一定时间/次数将结果写入数据库。 优点:该方法依赖于缓存,读写速度快,不需要实时更新数据库,减轻数据库并发写的压力; 缺点:缓存不是100%稳定,很容易丢,即使采用持久化的缓存,在高并发下有时也可能会出现异常,穿透缓存到db ,导致前端业务展现问题。 3 数据库层 a 将热点数据拆分,分在不同的库不同的表中,分散热点数据,减轻数据库并发更新热点带来的RT升高和应用连接等待时能保证业务能够正常访问其他商品表,损失局部可用性。 优点:实时读写数据库,前端展示数据的准确性。 缺点:业务逻辑稍显复杂。 b 限流补丁 针对某些特定的sql语句 从MySQL 层面加以限制,当系统thread_running达到一定值或者某个sql执行时间超过一定阈值则拒绝该sql的执行。(阿里内部已经实现限流版本)

    00

    千万级高并发秒杀系统设计套路!超详细解读~~

    曾经有一家巨头公司和我们公司进行战略合作,经过双方的不懈努力及精诚合作,双方公司决定共同举办一场秒杀活动,我们公司提供优质商品和强有力的吸引价格以及使用场景,对方公司提供巨大的用户流量,再加上我们公司自己的用户流量,粗略估算下来有5000万的用户流量。 其实,当时我们的架构是完全支撑不了千万级流量的瞬时冲击的,但是双方老板已经达成协议就要快速干起来,而且给了一个基本无法完成的时间期限。 由于时间紧急,我们公司技术部召开了紧急会议,最终得出结论就是在原有架构基础上增加秒杀的相关接口,增加两个H5页面作为前端秒

    03
    领券