本文以我个人的理解简单分析下并行数据库的技术要点以及对未来并行数据库的发展做下展望,理解有偏差的地方,欢迎各位指正。 并行数据库的定义 在维基百科上,并行数据库被定义为通过并行使用多个CPU和磁盘来将诸如装载数据、建立索引、执行查询等操作并行化以提升性能的数据库系统。其中最重要的关键词是并行,分布式。 并行数据库的技术要点 并行数据库主要由执行引擎、存储引擎和管理功能模块组成,它们的不同技术风格形成了各个有特色的并行数据库产品。随着Hadoop的兴起,目前MPP数据库主要分成两类
我们对这两种数据库进行了深入的基准测试研究,应用了超过133项测量指标进行全面比较。以下是测试结果。
CynosDB源于单词Cynosure,是古希腊神话中北极星的名字,就是北天小熊座最亮的一颗星,现译为引人注目的人或物、天生的焦点。
导语 在复杂的云环境中,价格削减已经开始逐步局限于虚拟机。这使得服务提供商能够长期在其产品组合的剩余部分中利用其稳定增长的利润率。我们正在目睹的是一个即将扩展到计算之外的转变,它将渗透到更加广泛的存储领域中去,包括数据库。 云计算的价格战已经不是一个新鲜的事情。在2014年,微软、谷歌和亚马逊为了占据市场最大份额先后拉开价格战的序幕。接下来的几天,云计算市场迎来的大幅度降价,在某些情况中,云计算产品的收入平均下降了85%。对此,部分人认为,降价是一种解脱,这些公司一直在向客户收取过高费用。另外一部分人则认为
技术真的是日新月异,关系型数据库在数据库存储界称霸这么多年后,市面上各种数据库如雨后春笋蓬勃发展,似乎关系型数据库也地位不保,我前段时间和同事聊天,听到他们经常说的现在市面上的noSql数据库完全可以替代现有的关系型数据库,可是事实真的如此吗,我们一起就市面上现在比较流行的各类数据库,做一个对比:
网关型堡垒机:主要部署在外部网络和内部网络之间,作为进入内部网络的一个检查点,用于提供对内部网络特定资源的安全访问控制。它不直接向外部提供服务,也不提供路由功能。网关型堡垒机将内外网从网络层隔离开来,除授权访问外,还可以过滤掉一些针对内网的、来自应用层以下的攻击,为内部网络资源提供了一道安全屏障。但由于此类堡垒机需要处理应用层的数据内容,性能消耗很大,所以随着网络维护设备进出口处流量越来越大,部署在网关位置的堡垒机逐渐成为了性能瓶颈。
在进行后端的学习过程中,有时由于个人的学习广度的局限导致无法从全局理解一些概念,服务端的架构的演进历史,同时列举出每个演进阶段会遇到的相关技术,让对架构的演进有一个整体的认知。并帮助读者与本人提高在学习路上的能见度。
2014年加入京东,负责京东财务退款及价格保护研发建设,擅长京东逆向流程场景、金额拆分计算、高并发下网站优化。
参考blog:http://blog.csdn.net/u012377333/article/details/50598519
版权声明:本文由腾讯云数据库产品团队整理,页面原始内容来自于db weekly英文官网,若转载请注明出处。翻译目的在于传递更多全球最新数据库领域相关信息,并不意味着腾讯云数据库产品团队赞同其观点或证实其容的真实性。如果其他媒体、网站或其他任何形式的法律实体和个人使用,必须经过著作权人合法书面授权并自负全部法律责任。不得擅自使用腾讯云数据库团队的名义进行转载,或盗用腾讯云数据库团队名义发布信息。
低代码平台正在不断发展,新平台不断涌入市场,旧平台不断调整产品和策略,所以本篇文章的目的通过低代码平台使用者的视角引出细节,了解他们为什么使用低代码平台以及会选择哪个低代码平台来加速内部系统的开发。读者也可以点击链接向码匠分享自己的意见或建议。
依靠内存来存储数据的数据库管理系统,也称为内存数据库,成为了解决高并发、低时延数据管理需求的技术路线。近年来,随着动态随机存储器(DRAM)容量的上升和单位价格的下降,使大量数据在内存中的存储和处理成为可能,Redis、Memcached等内存数据库管理软件逐渐成熟,应用范围越来越广。
在复杂的云环境中,价格削减已经开始逐步局限于虚拟机。这使得服务提供商能够长期在其产品组合的剩余部分中利用其稳定增长的利润率。我们正在目睹的是一个即将扩展到计算之外的转变,它将渗透到更加广泛的存储领域中去,包括数据库。 存储,新的战场 为了获得而不是失去市场份额,一些企业开始在竞争者日益增多的背景下降低虚拟机的价格。根据451研究表明:云价格指数,竞争的服务超出了计算的范围,保持了价格的稳定。然而,价格的雪崩似乎正在蔓延。 在过去的12个月里,每个地区的对象存储价格都有所下降,在某些情况下甚至下降
系统的运作会需要计算器服务主机的支持,为了使用更加方便,多数都是会选择云服务器主机,但是不同的使用途径需求的配置不一样,如果是普通的网站对配置相对较低,只需要满足日常的数据上传和访问即可,但购物类的平台相对要考虑到特别是大促活动的时候大量的点击率和交易所带来的数据计算需求,会在配置要求上高一些,但如果是大数据库的话,自然配置会更高一些,那么如何选购数据库服务器呢,需要了解运行的核心数据。
传统的关系数据库(MySQL、Oracle、和Access等)主导了20世纪的数据存储模式,但当数据量达到太字节级,甚至拍字节级时,关系型数据库表现出了难以解决的瓶颈问题。为了解决海量数据存储和分布式计算问题,Google Tab 提出了Map/Reduce 和Google File System(GFS)解决方案,Hadoop作为其中一个优秀的实现框架迅速得到了业界的认可和广泛应用。但Hadoop的存储模式决定了其并不支持对数据的实时检索和计算。还有其他的替代方案吗?为何不尝试Elasticsearch 的分布时存储功能?
MySQL是一种关系型数据库管理系统,由瑞典MySQL AB公司开发,后被Sun公司收购,最终被Oracle公司收购。
在 时间序列数据和MongoDB中:第一部分 - 简介 我们回顾了您需要了解的关键问题,以了解数据库的查询访问模式。在 时间序列数据和MongoDB:第二部分 - 模式设计最佳实践中, 我们探讨了时间序列数据的各种模式设计选项以及它们如何影响MongoDB资源。在这篇博文中,我们将介绍如何查询,分析和呈现MongoDB中存储的时间序列数据。了解客户端如何连接以查询数据库将有助于指导您设计数据模型和最佳数据库配置。查询MongoDB有多种方法。您可以使用本机工具(如 MongoDB Shell 命令行)和 MongoDB Compass(基于GUI的查询工具)。通过一系列以编程方式访问MongoDB数据 MongoDB驱动程序。几乎所有主要的编程语言都有驱动程序,包括C#,Java,NodeJS,Go,R,Python,Ruby等等。
以分销、代销业务为核心的B2B交易平台,通过建立各级商家之间渠道通路的方式,赋能线上线下B用户,并为其提供一站式采购、售卖的解决方案。
2018年11月22日, 腾讯云宣布新一代自研云原生数据库CynosDB正式发布。这是业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。
想做一个B2B2C的电商平台,在后台数据统计搭建的时候需要注意哪些问题?如何设计具体的统计模块?
在传统工业控制领域,由于其自身的特殊性,有很多对实时数据处理的要求,特别是流程工业中,对各生产环节的监控要求十分严苛,需要通过监测数据实时反应出系统的状态,所以对于实时数据的处理十分看重。因此工业实时数据库应运而生,其主要用于工业过程数据的采集、存储以及查询分析,以实现过程状态的实时监控。
PostgreSQL 11正在酝酿之中,即将发布。同时,使用您自己的应用程序对其进行测试是确保社区在零点发行之前捕获所有剩余错误的好方法。
最近,微软详细介绍了分布式 PostgreSQL 基准测试的结果,比较了 Azure Cosmos DB for PostgreSQL、CockroachDB 与 Yugabyte 的事务处理性能和价格。这几种数据库在实现时做了不同的权衡,测试结果显示,Azure Cosmos DB 的吞吐量更高。同时,他还着重指出了针对分布式数据库进行基准测试所面临的挑战。
由于 CnG 商店的数量数万家,且每家商店可能包含数万种商品,刷新可能每天涉及超过 10 亿件商品。
相信大部分又折腾能力并且喜欢折腾的,都用NAS去部署过个人博客,而在这其中使用最多的可能就是WordPress和Typecho了。当然了,还有很多优秀的博客程序,例如halo、zblog以及vanlog等等,这些也都不错。今天介绍的同样是一款不错的博客程序——emlog,算是一款轻量化的博客程序,凭借优秀的后台管理以及内容管理,个人觉得有必要推荐一下。
近期连续参加了多场数据库技术会议,针对数据库ToB市场的最新变化,自己的一点观察。以下观点仅针对偏重传统企业,互联网企业差异性较大。
点击上方蓝字每天学习数据库 在MemSQL使用中,我们发现人们对时序数据库的场景非常感兴趣。当遇到以下情况时尤其如此:(1)高效率的事务获取,(2)低延迟查询和(3)高并发查询率。 在下文中,我将展示如何使用MemSQL用作一个强大的时序数据库,并通过简单的查询和用户定义的函数来说明这一点,这些函数将展示如何进行时间序列 - 频率转换,平滑等操作。 我还将介绍如何快速加载时序数据点,并且没有规模限制。 用SQL操作时间序列 与大多数时序数据库不同,MemSQL支持标准SQL,包括内部和外部联接,子查询,
本次分享将介绍Pigsty:PostgreSQL RDS的Me-Better开源替代。Pigsty是如何从可观测性,可靠性,可维护性,可用性,可扩展性与安全性六个维度上,让裸奔的PostgreSQL内核成为全盛状态的六边形战士,以云数据库5%~30%的成本,提供更好的生产级关系型数据库服务(RDS)。
云提供商不但有机会帮助客户解决当今的挑战,还能够辅助客户迎接未来即将面临的挑战。面对未来的机遇,托管服务提供商的云计算看起来非常光明,可以帮助客户在复杂关联的,不稳定的托管环境中取得成功。 云计算的价
关系型数据库 特点 优点 缺点 非关系型数据库 特点 优势 缺点 选择它就是因为好用啊 关系型数据库 特点 基于单一关系模型,结构化存储,有完整性约束 通过二维表建立数据之间的联系 采用结构化查询语言(SQL)做数据读写 操作保存数据的一致性 优点 通过事务处理保持数据的一致性 数据更新的开销很小 可以进行 Join 等复杂查询 技术成熟 缺点 数据读写必须经过 sql 解析,大量数据、高并发下读写性能不足 为保证数据一致性,需要加锁,影响并发操作 无法适应非结构化的存储 服务
高级亚马逊Web服务用户更喜欢自我管理运行在亚马逊弹性计算云上的数据库,而不是数据库即服务产品,至少现在看是这样的。 上周,AWS超级用户在线活动群组创立会议的演示中,关注超级用户如何在AWS上运行数据库。大多数演讲者表示他们在弹性计算云(EC2)上运行类似Cassandra和MySQL这样的自我管理数据库,而不是使用亚马逊的数据库即服务(DBaaS)平台,比如关系型数据库服务(RDS)以及DynamoDB。 然而,一些IT专家在此次活动中也表示有过DBaaS体验,而且一些仍旧在自我管理和DB
Idera, Inc.一直专注于用户,并帮助软件用户在业务中做出实时技术决策。在过去的20年中,Idera, Inc.为更多人提供了更多工具和创新,并通过扩展Idera, Inc.品牌组合将自己确立为值得信赖的顾问。
编者注:本系列与读者共同分析数据库行业的最新动态。关注“数据和云 ( OraNews)”公众号回复:下载 。可以找到下载链接。 本次推荐文档来自 西南证券研究发展中心 数据库专题报告《沐风栉雨,砥砺前行》。 核心观点 数据库是信息化时代的基石产品 数据库具有处理、存储、管理数据的功能,在信息化时代扮演着至关重要的角色。随着数据量的不断增加和数据形式的不断多样化,非关系型数据库和开源 数据库也应运而生... 数据库厂商近年来也在积极推进云数据库产品,以期能够未来优先抢占云数据库这块 “蛋糕 ”。 2. 数据
采用合适的存储解决方案是打造高效数据库的基础。在传统的数据库存储金字塔结构中,DRAM时延低,速度快,有利于加快计算速度,但价格相当昂贵且容量有限。块存储虽然容量大、价格便宜且具备数据持久性,但数据传输速度较慢。由于低数据延迟和高数据容量无法在同一个设备中兼得,因此企业需要在各个因素之间寻求微妙的平衡,找到适当的存储和内存设备组合来满足需求。
这是SAP HANA曾经反击的文章,今天再次翻出来阅读觉得意味深远。由于过于技术对于两家到底谁优谁劣一直没有定论,不过从SAP HANA问世起至今,SAP和Oracle的战火就从未停止过。 这段时间以来,Oracle 一直试图传播有关 SAP HANA 的负面消息,而且有愈演愈烈的趋势,这真让人难以置信。对此,SAP 的传统做法是走正道,只对这类消息做正面回应。Oracle 所传播的信息几乎是百分之百错误的,他们的目的只有一个,就是保护其现有的营业收入。您只要回顾一下 Oracle 在过去 10 年中对云计
周日那天冯老师,云斗士又针对云资费贵的问题写了文章进行了DISS,我对这个事情是赞同的,只有不同的声音,才能让平民用上更便宜的资费,必须有人站出来说说这些事情。
MongoDB 是一种文档型数据库(官网:https://www.mongodb.com/),由于它的高可用性、高扩展性和高性能而被广泛应用于大数据、云计算等领域。本篇文章将详细介绍 MongoDB 的概念、特点以及使用场景,并分析三款常用的 MongoDB 可视化管理工具。
作者:代码屠夫18 出处:my.oschina.net/u/3854434 一.分布式架构的发展历史 1946年,世界上第一台电子计算机在美国的宾夕法尼亚大学诞生,它的名字是:ENICAC ,这台计算机的体重比较大,计算速度也不快,但是而代表了计算机时代的到来,再以后的互联网的发展中也有基础性的意义。 计算机的组成是有五部分完成的,分别是:输入设备,输出设备,存储器,存储器里面由运算器和控制器,有一个冯诺依曼的模型非常形象的对象计算机的组成进行了描述,不过计算机也是有数据流,指令流,控制流来进
在原生的EF框架中,针对批量数据操作的接口有限,EF扩展框架弥补了EF在批量操作时的接口,这些批量操作包括:批量修改、批量查询、批量删除和数据缓存,如果您想在EF中更方便的批量操作数据,这个扩展将对您来说很有用。 下载安装 这个框架支持通过NuGet包管理器进行安装,你可以在包管理器中搜索:EntityFramework.Extended,最简单的方法就是程序包管理控制台进行安装,安装命令如下: PM > Install - Package EntityFramework.Extended 框架安装后,
之前的文章“ 时间序列数据和MongoDB:第一部分 - 简介 ”中,介绍了时间序列数据的概念,然后介绍了一些常见问题,可用于帮助收集时间序列应用程序。这些问题的答案有助于指导支持大批量生产应用程序部署所需的架构和 MongoDB 数据库配置。现在,我们将重点介绍两种不同的模式设计如何影响读取,写入,更新和删除操作下的内存和磁盘利用率。
1946年,世界上第一台电子计算机在美国的宾夕法尼亚大学诞生,它的名字是:ENICAC ,这台计算机的体重比较大,计算速度也不快,但是而代表了计算机时代的到来,再以后的互联网的发展中也有基础性的意义。
就在不久前,AWS发布了其重量的数据库产品-Aurora Serverless形态的最新预览版本:Aurora Serverless V2。其对云数据库产品发展带来很大的引领意义。本文将从Aurora Serverless V2的能力谈起,并谈谈数据库产品Serverless的发展趋势。
软件实体应该对扩展开放,对修改关闭,即实体应当通过扩展实现变化,而不是修改代码实现变化
在担任 Uber CTO 的七年间,他带领这家国际共享出行巨头在广阔的运输网络背景下,开发了革命性技术。在 Uber,他的领导力和远见卓识极大促进了 Uber 技术基础的建设,使其共享乘车次数从每年的 1000 万余次增长到每年近 70 亿次,并辐射达 800 个城市。
一、sqlserver 优点: 易用性、适合分布式组织的可伸缩性、用于决策支持的数据仓库功能、与许多其他服务器软件紧密关联的集成性、良好的性价比等; 为数据管理与分析带来了灵活性,允许单位在快速变化
MySQL的核心程序采用完全的多线程编程。线程是轻量级的进程,它可以灵活地为用户提供服务,而不过多的系统资源。用多线程和C语言实现的mysql能很容易充分利用CPU;
【编者按】大数据应用程序究竟是选择SQL还是NoSQL?VoltDB公司首席技术官Ryan Betts和Couchbase公司首席执行官Bob Wiederhold分别提出了不同的意见,同时借助多项论
领取专属 10元无门槛券
手把手带您无忧上云