本文转载java知音
1.请求数量较高,大量的请求过来之后都需要去从缓存中获取数据,但是缓存中又没有,此时从数据库中查找数据然后将数据再存入缓存,造成了短期内对redis的高强度操作从而导致问题
1、 需求分析 庞大的业务访问量需要高性能、可靠的服务器框架支撑。高性能要求服务器在巨大压力下仍然高速运行,读写返回正确的业务信息,前端用户体验良好。可靠性要求服务器出现宕机、罢工等情况,可以及时恢复服务器正常工作状态,支持业务系统24小时健康运行。使用缓存、读写分离技术提高服务器访问资源速度,解决大访问量资源拥堵问题;使用负载均衡与高可用技术提高服务器响应速度以及服务器稳定性,解决服务器处理大用户量请求问题以及服务器宕机的及时恢复能力。 同时,需要部署运维监控平台,监控服务器上服务程序与资源使用情况,出现
数据库的进程是端口存在,并不意味着数据库是可用的。 通过网络连接到数据库并且确定数据库是可以对外提供服务的。 如何确认数据库是否可以通过网络连接 MySQL本地的SQL 并不意味着可以连接到数据库服务器,防火墙,TCP/IP mysqldamin -umonitor_user -p -h ping telnet ip db_port 使用程序通过网络建立数据库连接 如何确认数据是否可以读写 检查数据库的read_only 参数是否为off 主从切换 新的主库原先是从库 造成主库不可写,定期对主从服务器中主数据库的read_only参数进行检查。 建立监控表并对表中数据进行更新。 判断数据库是否可读 select@@version
Lepus是一套开源的数据库监控平台,目前已经支持MySQL、Oracle、SQLServer、MongoDB、Redis等数据库的基本监控和告警(MySQL已经支持复制监控、慢查询分析和定向推送等高级功能)。Lepus无需在每台数据库服务器部署脚本或Agent,只需要在数据库创建授权帐号后,即可进行远程监控,适合监控数据库服务器较多的公司和监控云中数据库,这将为企业大大减化监控部署流程,同时Lepus系统内置了丰富的性能监控指标,让企业能够在数据库宕机前发现潜在性能问题进行处理,减少企业因为数据库问题导致的直接损失。
前面一篇文章中我已经对项目的基本情况进行了简单的介绍,今天就开始动手针对系统进行性能调优。在性能调优上面说实话我算是个菜鸟,并没有太多的经验和扎实的基础,所以有错误的地方希望大家指出。
在估算之前我们必须清楚这台数据库服务器的配置是什么情况,正常情况下我们需要摸清楚以下几点因素:
性能测试为保证软件质量起到重要作用,对于交易量较大的应用系统,性能测试更是一个必不可少的环节。
从网上去搜数据库优化基本都是从SQL层次进行优化的,很少有提及到数据库本身的实例优化。就算有也都是基于某个特定数据库的实例优化,本文涵盖目前市面上所有主流数据库的实例优化(Oralce、MySQL、POSTGRES、达梦),按照文章的配置能够将你数据库性能用到80%或以上。
首先需要尽可能的了解优化问题,收集问题期间系统信息并做好存档。根据当前系统问题表现制定优化目标并与客户沟通目标达成一致;通过一系列工具分析系统问题,制定优化方案,方案评审完成后由各负责人员进行实施。若达到优化目标则编写优化报告,否则需要重新制定优化方案。
我们用 docker-compose 部署一套单机版 prometheus 集群,docker-compose up -d 启动后可以直接看到监控效果。
使用场景: 我这里zabbix会自动监控发现所有tomcat 的war包,当批量自动更新war包时候,zabbix会产生大量w报警推到微信,于是在微信端做了一对开关 代码很简单 <?php @my
4.域名--->CDN--->负载均衡--->云服务器ECS+数据库RDS(主从)+缓存Redis
相信朋友对SQL Server性能调优相关的知识或多或少都有一些了解。虽然说现在NOSQL相关的技术非常的火热,但是RMDB(关系型数据库)与NOSQL是并存的,并且适用在各种的项目中。在一般的企业级开发中,主要还是RMDB占据主导地位。并且在互联网项目中,也不是摒弃了RMDB,例如MySQL就在很多的互联网应用中发挥着作用。所以,对数据库的调优是个值得深入学习的课题。本系列文章,主要讲述与SQL Server相关的调优知识,希望能够为朋友们带来一些帮助。 本篇提纲如下: 传统SQL Server调优方式的
之前做的压测性能标准、产品说明书的性能需求部分、运营人员提出的性能指标、通过生产环境换算出的性能指标等
在Redis官网中,是这样介绍Redis的: The open source, in-memory data store used by millions of developers as a database, cache, streaming engine, and message broker. 翻译为: 被数百万开发人员用作数据库、缓存、流媒体引擎和消息代理的开源内存数据存储
大家有没这种感觉,不论甲方还是乙方,拿到一套数据库我们很难快速的知道他的配置,数据库状态以及性能状态
前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己业务场景的高并发处理方案。 在电商相关产品开发的这些年,我有幸的遇到了并发下的各种坑,这一路摸爬滚打过来有着不少的血泪史,这里进行的总结,作为自己的归档记录,同时分享给大家。 服务器架构 业务从发展的初期到逐渐成熟,服务器架构也是从相对单一到集群,再到分布式服务。 一个可以支持高并发的服务少不了好的服
高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。
高并发经常会发生在有大活跃用户量和用户高聚集的业务场景中,如:秒杀活动、定时领取红包等。
某年某月某日的一个下午,接收到监控服务器的一条告警短信:尊敬的运维工程师 XX,你好:“192.168.136.200”数据库服务器 CPU 异常,CPU 使用率 98.7%,请尽快处理。看到这个消息浑身一紧,赶紧掐灭手中的烟,跑回办公室。
oracle数据库,需要对kernel.shmmax shmmni shmall sem fs.file-max优化 web应用服务器,需要net.ipv4.ip_local_port_range tcp_tw_reuse somaxconn
请在你的系统服务请求中包括下面所有的信息,如果可能的话,你也可以在请求中包括你认为最有可能出现的问题。这样的话,可以避免我们进一步对你系统的问题进行询问。
Kafka 是一个开源的分布式流式平台,它可以处理大量的实时数据,并提供高吞吐量,低延迟,高可靠性和高可扩展性。Kafka 的核心组件包括生产者(Producer),消费者(Consumer),主题(Topic),分区(Partition),副本(Replica),日志(Log),偏移量(Offset)和代理(Broker)。Kafka 的主要特点有:
Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装、中心化管理、集群监控、报警等功能,使得安装集群从几天的时间缩短在几小时以内,运维人员从数十人降低到几人以内,极大的提高集群管理的效率。所以为了同学们能够快速搭建该平台,写出以下教程仅供参考,有什么不足之处请提出,加以改正。 开始之前其实有很多的工作要做,比如配置IP地址、关闭防火墙、配置SSH免密登录等,这些都是比较常规的环境配置,这里不再赘述,不懂者自行百度。 附上大数据“前世今生”的一篇文章给大家,希望大家对大数据有更多的了解,大数据的前世今生:诞生、发展、未来?
导读:有好多人在接触到服务器之前一般都是操作过一个有线网卡或者加一个无线网卡,一般服务器都有多个网卡或者网口,那么这时候如何操作了,本人在以前的公司里管理过相关服务器,就这个问题来浅淡一下。高手请绕道,若喜欢,敬请关注,不喜,勿喷,感谢。
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
在如何保障系统的稳定运行中,监控报警可谓重中之重,没有监控报警的系统,就等同于没皮肤的人类一样,弱不禁风。举个最简单的例子,如果能够在第一时间发现得了癌症,甚至在萌芽阶段就检查出来,那致死率的概率可以下降非常多,但是如果等身体反应出来的时候,那大概率是到了晚期,基本没治了。
TechEmpower Web Framework Benchmarks 是许多Web应用程序框架执行基本任务(如JSON序列化、数据库访问和服务器端模板组合)的性能比较的专业网站。每个框架都在实际的生产配置中运行。结果在云实例和物理硬件上捕获。测试实现主要是由社区贡献的,所有源都可以在GitHub存储库中使用。
要设计出一套能支撑几十亿人的系统是很困难的。对于软件架构师来说,这一直是一项很大的挑战,但是,从现在开始,看完我的文章,你就会觉得容易很多了。
数据库热点问题可以说是比较常见的场景,但往往这是表象,为什么产生热点,它背后的根源,才是解决问题的关键所在。同一个现象,可能来自于不同的原因,都需要相应分析,才可以找到合适的解决方案。技术社群的这篇文章《数据库热点问题的产生和避免》从若干个方向讨论了数据库热点问题的产生以及避免的策略,可以给我们提供一些借鉴。
这个系列属于个人学习网易云课堂MySQL数据库工程师微专业的相关课程过程中的笔记,本篇为其“MySQL业务优化与设计”中的MySQL数据类型相关笔记。
一 简介 从今年3月份开始,我和另外一位小伙伴王航威一起开发一套 数据库管理平台-ZanDB ,该平台主要使用Django 作为web 框架,使用 一款go语言的agent 在数据库服务器执行各种功能脚本。和其他大多数DB自动化管理平台一样 ,该平台提供实例申请,备份恢复,上下线(和我们的proxy 中间件耦合) 以及数据质量对比,慢查询分析等功能。本文主要是记录开发ZanDB 这套系统使用哪些功能组件。
当初学习 Linux 的使用,从基础到服务到集群,都是在虚拟机做的,虽然老师告诉我们跟真机没有什么差别,可是对真实环境的渴望日渐上升,不过虚拟机的各种快照却让我们养成了各种手贱的习惯,以致于拿到服务器操作权限时候,就迫不及待的想去试试。
Java在游戏服务器开发中的应用 随着游戏市场的兴起,特别是网页游戏、手机游戏的崛起,对游戏开发技术的需求越来越多。网络游戏开发是一个庞大的体系,总体来说是客户端与服务器端。客户端是玩家接触的游戏图像显示端,服务器是处理游戏运行中的各种数据,由于一台服务器要支持众多玩家的请求,所以服务器的性能高低决定了同一个游戏的用户数量。 我们公司选择使用Java做服务器开发语言,主要原因是:1.Java是跨平台的,方便部署;2.Java是安全的高级语言,可以提高开发效率;3.Java是面向对象的,代码可以重用;4.Ja
本章介绍如何优化MySQL性能并提供示例。优化包括在多个级别上配置、调优和度量性能。根据您的工作角色(开发人员、DBA或两者的组合),您可以在单个SQL语句、整个应用程序、单个数据库服务器或多个联网数据库服务器的级别上进行优化。有时,您可以积极主动地提前计划性能,而有时,您可能会在出现问题后对配置或代码问题进行故障排除。优化CPU和内存使用也可以提高可伸缩性,允许数据库在不降低速度的情况下处理更多负载。
责编:乐乐 | 链接:my.oschina.net/u/3772106/blog/1793561
最近系统(基于SpringCloud+K8s)上线,运维团队早上8点左右在群里反馈,系统登录无反应!我的第一反应是Mysql数据库扛不住了。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
一款面向研发人员查看的MongoDB图形可视化监控工具,借鉴了Percona PMM Grafana以及官方自带的mongostat工具输出的监控指标项,去掉了一些不必要看不懂的监控项,目前采集了数据库连接数、QPS/TPS、内存使用率统计,副本集replset状态信息和同步复制延迟时长。
大多数人面试的时候经常会被问到:你简历上有高负载高并发的经验,那到底你的系统是怎样设计的?
描述:通常服务器操作系统使用 linux,应用程序使用 PHP 开发,然后部署在 Apache 上,数据库使用 Mysql,通俗称为 LAMP。汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
这篇文章主要揭秘 Stack Overflow 截止到 2016 年的技术架构。 首先给出一个直观的数据,让大家有个初步的印象。 相比于 2013 年 11 月,Stack Overflow 在 2016 年 02 月统计数据有较大变化,下面给出 2016 年 02 月 09 号一天的数据,如下: HTTP 请求数 209,420,973 (+61,336,090) 网页加载次数 66,294,789 (+30,199,477) HTTP 流量发送有1,240,266,346,053 (+406
在安装、部署Oracle数据库软件时,需要根据不同应用结构(即硬件平台、操作系统平台)采用不同的方法(基本安装、高级安装),下面介绍几种常见的应用结构。
随着越来越多的人参与到互联网的浪潮来,曾经的单体应用架构越来越无法满足需求,所以,分布式集群架构出现,也因此,分布式搭建开发成为了Web开发者必掌握的技能之一。那什么是分布式呢?怎么实现分布式以及怎么处理分布式带来的问题呢?本系列文章就来源于对分布式各组件系统的学习总结,包含但不限于Zookeeper、Dubbo、消息队列(ActiveMQ、Kafka、RabbitMQ)、Nosql(Redis、MongoDB)、Niginx、分库分表MyCat、Netty等内容。作为跟大多数人一样的学习使用者,而非布道者,个人理解难免会有偏差或是其它错误,希望各位读者不吝指教。
松哥原创的 Spring Boot 视频教程已经杀青,感兴趣的小伙伴戳这里-->Spring Boot+Vue+微人事视频教程
作者介绍 巩飞(Morinson) 云和恩墨技术专家 网名Morinson,现服务于云和恩墨西北区,有14年在IT公司的技术类工作经验,特别是在 Oracle 数据库管理领域方面,有12年的工作经验,先后从事了软件开发,团队技术负责人,数据库高级顾问,但总的来说,在数据库方面得到了大家的更多认可。 简介 作为dba,大家的核心工作就是保障数据库的安全稳定高效运行,但是很多时候挑战并不是来自于我们能够把握的范畴之内,风险可能来自于数据库外部,比如今天要和大家交流的数据库连接数
领取专属 10元无门槛券
手把手带您无忧上云