首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

新手 - c ++中的矩阵加法实现

以下是关于新手 - C++中的矩阵加法实现的完善且全面的答案:

矩阵加法是指将两个矩阵的对应元素相加,得到一个新的矩阵。在C++中,可以使用二维数组来表示矩阵,并使用循环语句来实现矩阵加法。

以下是一个简单的C++代码示例,实现了两个矩阵的加法:

代码语言:c++
复制
#include<iostream>
using namespace std;

int main() {
    int a[3][3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
    int b[3][3] = {{9, 8, 7}, {6, 5, 4}, {3, 2, 1}};
    int c[3][3];

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            c[i][j] = a[i][j] + b[i][j];
        }
    }

    cout << "The sum of the matrices is: "<< endl;
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            cout << c[i][j] << " ";
        }
        cout<< endl;
    }

    return 0;
}

在这个示例中,我们首先定义了两个二维数组a和b,分别表示两个矩阵。然后,我们定义了一个新的二维数组c,用于存储矩阵加法的结果。接下来,我们使用嵌套的循环语句来遍历矩阵中的每个元素,并将它们相加,存储在新的矩阵c中。最后,我们输出矩阵c的结果。

需要注意的是,在实现矩阵加法时,需要确保两个矩阵的行数和列数相同,否则无法进行矩阵加法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

教程 | 基础入门:深度学习矩阵运算的概念和代码实现

选自Medium 机器之心编译 参与:蒋思源 本文从向量的概念与运算扩展到矩阵运算的概念与代码实现,对机器学习或者是深度学习的入门者提供最基础,也是最实用的教程指导,为以后的机器学习模型开发打下基础。 在我们学习机器学习时,常常遇到需要使用矩阵提高计算效率的时候。如在使用批量梯度下降迭代求最优解时,正规方程会采用更简洁的矩阵形式提供权重的解析解法。而如果不了解矩阵的运算法则及意义,甚至我们都很难去理解一些如矩阵因子分解法和反向传播算法之类的基本概念。同时由于特征和权重都以向量储存,那如果我们不了解矩阵运算

013

卷积操作的参数量和FLOPs

这里首先需要辨析一个概念就是FLOPs和FLOPS可以看到简写的差别仅仅是一个字母大小写的区别。   FLOPS(floating-point operations per second),这个缩写长这个样子确实也很奇怪,大致概念就是指每秒浮点数运算次数,最后一个S是秒(second)的缩写,是计组中的概念,用来描述计算机的运算速度。   FLOPs(floating-point operations),一旦s变为小写,就表示复数的概念,就是浮点数运算次数,这就和计算量相关了,和卷积或者其他算法联系起来基本上就表示计算次数,可用来衡量操作的复杂程度。   卷积的参数基本上都是说的卷积核的参数,拿一层神经网络来看,卷积核的大小是 ( k h , k w ) (k_h,k_w) (kh​,kw​),显然一个卷积核的参数量是这个卷积核的矩阵 k h ∗ k w k_h*k_w kh​∗kw​,通常这里还要加上一个偏置 b b b,算作一个参数,为了简便计算,这里忽略不计,通常b的设置会有差异性。如果说一层神经网络的输入通道数为 C i n C_{in} Cin​输出通道数为 C o u t C_{out} Cout​,卷积核需要通过矩阵运算,把输入的 C i n C_{in} Cin​的通道数映射为输出为 C o u t C_{out} Cout​,如果熟悉卷积核矩阵乘法,我们显然知道这个卷积核的参数就是 C i n ∗ k h ∗ k w ∗ C o u t C_{in}*k_h*k_w*C_{out} Cin​∗kh​∗kw​∗Cout​,而且需要注意这只是一个卷积核的,如果有多个卷积核的还需要乘数量。   假设我们经过这个卷积,将输入的特征图映射为 ( H , W ) (H,W) (H,W)的特征图,特征图这些部分是我们中间的计算结果,我们不需要当参数保存,所以计算参数不需要包括这部分。但是如果算卷积操作的计算量,则就用得到了。我们通过对一个区域的卷积运算,将这个区域映射为特征图中的一个cell,同样我们想矩阵的乘法,把一个矩阵乘以 { C i n , k h , k w } \left \{ C_{in},k_h,k_w \right \} { Cin​,kh​,kw​}的卷积核变为一个1乘1的矩阵,可以理解为内积操作,所以得到这一个cell的计算量就是这么多个元素的矩阵的内积操作,显然这个计算量就是 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin​∗kh​∗kw​个乘法加 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin​∗kh​∗kw​-1个加法。但是显然我们输出的通道数是 C o u t C_{out} Cout​,所以我们需要 C o u t C_{out} Cout​个这样的操作。这只是求出来一个输出特征图的cell,我们需要求 H ∗ W H*W H∗W个cell,那么最终的计算量还需要再乘上这个值。也就是 ( 2 C i n ∗ k h ∗ k w − 1 ) ∗ C o u t ∗ H ∗ W \left(2C_{in}*k_h*k_w-1\right)*C_{out}*H*W (2Cin​∗kh​∗kw​−1)∗Cout​∗H∗W的计算量了。   如果有偏置常数的话,显然这个偏置常数只关系加法,而且是在内积求完之后的,所以相当于加法也变为了 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin​∗kh​∗kw​个,没有那个-1,然后这样算出的最终计算量就是 ( 2 C i n ∗ k h ∗ k w ) ∗ C o u t ∗ H ∗ W \left(2C_{in}*k_h*k_w\right)*C_{out}*H*W (2Cin​∗kh​∗kw​)∗Cout​∗H∗W   一个cell一个cell的计算卷积,我们可以参考一张解释卷积的图。

01
领券