近来在做三维网格编辑相关的工作,于是看了04年的这篇高引用的经典论文,这篇文章在三维中使用拉普拉斯坐标配合多个限制方法实现了效果不错的网格编辑。...而之所以要将这样的坐标应用到三维中就是为了找到一种能够在相对坐标中表达出绝对坐标的方法, 这样的表示能够让我们在对网格进行处理时一定程度上忽略掉网格本身的绝对关系, 忽略掉网格在编辑时发生的平移, 旋转...顶点变换矩阵记录了每个顶点vi和其领域在原网格转换为新网格过程中发生的缩放和旋转变换, 是一个图形学中的仿射变换矩阵
要求解这个变换矩阵Ti并不容易, 我们首先想到Ti实际上可以求解下面的能量函数来得到...对于上面这个矩阵, s是缩放比率参数, h是三个轴的旋转参数, t是位移参数, 我们通过求解应用这个矩阵来解决平移, 旋转, 缩放的不变性限制....选完ROI后, 我们在网格中选择几个想要的控制点, 然后输入顶点移动到想要的目标位置, 这一步就是控制要编辑的网格需要得到的目标位置
拥有以上数据后, 我们就可以构建线性方程组, 很容易可以想到前面所说的方程组系数矩阵