首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenCV 3.1.0中的图像放缩与旋转

OpenCV在3.1.0版本中的图像放缩与旋转操作比起之前版本中更加的简洁方便,同时还提供多种插值方法可供选择。...二:旋转 图像绕原点逆时针旋转a角,其变换矩阵及逆矩阵(顺时针选择)的图像如下: ?...OpenCV3.1.0中实现图像旋转需要用到的两个API函数分别是 - getRotationMatrix2D - warpAffine 第一个函数是用来产生旋转矩阵M,第二个函数是根据旋转矩阵M实现图像指定角度的旋转...从上面旋转以后图像可以看到四个角被剪切掉了,无法显示,我们希望旋转之后图像还能够全部显示,在之前2.x的OpenCV版本中要实现这样的功能,需要很多的数学知识,而在3.1.0中只需要添加如下几行代码即可实现旋转之后的全图显示...旋转之后全图显示如下: ? 可以看出基于OpenCV3.1.0实现图像旋转的时候同样会涉及到像素插值问题,可以选择的插值算法跟放缩时候一致。

2.3K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像几何变换(缩放、旋转)中的常用的插值算法

    在图像几何变换的过程中,常用的插值方法有最邻近插值(近邻取样法)、双线性内插值和三次卷积法。...最邻近插值: 这是一种最为简单的插值方法,在图像中最小的单位就是单个像素,但是在旋转个缩放的过程中如果出现了小数,那么就对这个浮点坐标进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目标像素的像素值...举个例子: 3*3的灰度图像,其每一个像素点的灰度如下所示 我们要通过缩放,将它变成一个4*4的图像,那么其实相当于放大了4/3倍,从这个倍数我们可以得到这样的比例关系: 根据公式可以计算出目标图像中的...(0,0)坐标与原图像中对应的坐标为(0,0) (由于分母不能为0,所以我们将公式改写) 然后我们就可以确定出目标图像中(0,0)坐标的像素灰度了,就是234。...然后我们在确定目标图像中的(0,1)坐标与原图像中对应的坐标,同样套用公式: 我们发现,这里出现了小数,也就是说它对应的原图像的坐标是(0,0.75),显示这是错误的,如果我们不考虑亚像素情况,

    2.2K30

    基于FPGA的图像旋转设计

    一,图像旋转原理 图像旋转是指图像按照某个位置转动一定角度的过程,旋转中图像仍保持这原始尺寸。...图像旋转后图像的水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。...二,MATLAB仿真 方案一:【正向预设】从原图映射到目标图像 在此方案中,实现代码的方式是正向的思路,将原图中的像素点的坐标进行坐标的旋转,然后直接幅值到输出的图像中,此方案旨在找到输入坐标与输出坐标之间的代数对应关系...具体思路是,采用原图像的长宽作为基准,再用坐标转换的关系,将长和宽转换到旋转后的坐标系中,得到目标图像在旋转后坐标系中的显示区域,代码具体如下: % 读入图片 im = imread('1.jpg');...最终基于处理速度和资源占用的均衡考虑,最终选择方案二作为我们图像旋转的设计方案。 三,旋转坐标计算 在该设计中,要求图像拥有0到360的任意角度的旋转,坐标变换需要角度的正弦和余弦值。

    1.1K20

    【数字图像处理】旋转图像的几种方法

    今天介绍两种旋转图像的方法 OpenCV 方法 OpenCV 中带有一个旋转图像的函数 cv2.rotate rotate(src, rotateCode[, dst]) -> dst 参数: src...:输入图像 rotateCode:旋转方式 1、cv2.ROTATE_90_CLOCKWISE:顺时针 90 度 2、cv2.ROTATE_180:顺时针 180 度 3、cv2.ROTATE_90_COUNTERCLOCKWISE...numpy 方法 numpy 中也提供一种旋转图像或者矩阵的方法 np.rot90 顾名思义就是选择多少个 90 度,与 OpenCV 中实现不同的是,numpy 的这个函数是逆时针旋转的,其函数说明如下...: np.rot90(m, k=1, axes=(0, 1)) 参数:m:输入的矩阵或者图像 k:逆时针旋转多少个 90 度,k 取 0、1、2、3 分别对应逆时针旋转 0 度、90 度、180 度、270...度 axes:选择两个维度进行旋转 一个简单示例如下: ?

    5.4K40

    经验 | OpenCV图像旋转的原理与技巧

    01 引言 初学图像处理,很多人遇到的第一关就是图像旋转,图像旋转是图像几何变换中最具代表性的操作,包含了插值、背景处理、三角函数等相关知识,一个变换矩阵跟计算图像旋转之后的大小公式就让很多开发者最后直接调用函数了事...所以决定从程序员可以接受的角度从新介绍一下图像旋转基本原理与OpenCV中图像旋转函数操作的基本技巧。...首先看旋转之后的图像宽高变化,如下图所示: ? ? 这个是正常的平面坐标系中的旋转矩阵,可以简写为: ?...是一个2x3的矩阵,但是在图像中左上角是原点,要实现围绕图像的中心位置旋转,M就要重新计算,所以OpenCV中的图像旋转矩阵为: ? 其中scale是表示矩阵支持旋转+放缩,这里可以把Scale=1。...第三列是图像旋转之后中心位置平移量。 函数支持 OpenCV中支持图像旋转的函数有两个,一个是直接支持旋转的函数,但是它支持的是90,180,270这样的特殊角度旋转。

    2.9K40

    10、图像的几何变换——平移、镜像、缩放、旋转、仿射变换 OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(1)OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(2)数字图像

    1.几何变换的基本概念   图像几何变换又称为图像空间变换,它将一副图像中的坐标位置映射到另一幅图像中的新坐标位置。我们学习几何变换就是确定这种空间映射关系,以及映射过程中的变化参数。...但是,在使用向前映射处理几何变换时却有一些不足,通常会产生两个问题:映射不完全,映射重叠 映射不完全 输入图像的像素总数小于输出图像,这样输出图像中的一些像素找不到在原图像中的映射。 ?...要解决上述两个问题可以使用“向后映射”,使用输出图像的坐标反过来推算改坐标对应于原图像中的坐标位置。...在最终的实现中,常用到的是有缩放后的图像通过映射关系找到其坐标在原图像中的相应位置,这就需要上述映射的逆变换 ? 坐标系变换到以旋转中心为原点后,接下来就要对图像的坐标进行变换。 ?...这里需要注意的是,旋转中心的坐标(x0,y0)实在以原图像的左上角为坐标原点的坐标系中得到,而在旋转后由于图像的宽和高发生了变化,也就导致了旋转后图像的坐标原点和旋转前的发生了变换。 ? ?

    3.8K51

    图像的几何变换——平移、镜像、缩放、旋转、仿射变换 OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(1)OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(2)数字图像处理笔

    本文转:https://www.cnblogs.com/noticeable/p/10411640.html 1.几何变换的基本概念   图像几何变换又称为图像空间变换,它将一副图像中的坐标位置映射到另一幅图像中的新坐标位置...但是,在使用向前映射处理几何变换时却有一些不足,通常会产生两个问题:映射不完全,映射重叠 映射不完全 输入图像的像素总数小于输出图像,这样输出图像中的一些像素找不到在原图像中的映射。 ?...4.图像旋转 4.1旋转原理 图像的旋转就是让图像按照某一点旋转指定的角度。...在最终的实现中,常用到的是有缩放后的图像通过映射关系找到其坐标在原图像中的相应位置,这就需要上述映射的逆变换 ? 坐标系变换到以旋转中心为原点后,接下来就要对图像的坐标进行变换。 ?...这里需要注意的是,旋转中心的坐标(x0,y0)实在以原图像的左上角为坐标原点的坐标系中得到,而在旋转后由于图像的宽和高发生了变化,也就导致了旋转后图像的坐标原点和旋转前的发生了变换。 ? ?

    10.6K31

    目标检测中的旋转增强

    论文介绍 众所周知,一般的检测网络并不具备旋转不变性或者旋转等变性,在某些场景如遥感图像中,经常会对训练数据使用“旋转增强”来增强网络的性能。...这种通常的方法我们将它称为最大框法,它假设方框中的物体的形状为占满整个框的方形。...而本文作者提出,用最大内接椭圆来表示bounding box中物体的形状为更优的表示,对图片旋转后,对这个椭圆进行旋转,取椭圆的最大外接矩作为旋转后物体的真值框,如上图墨蓝色框所示。...\theta 度后的形状,\mathcal{B}() 表示对形状求最大外接水平矩形框, 这个优化公式即求出一个初始外接框中的最优的形状\hat{S},使得这个形状旋转 \theta 度后的外接框和真实形状旋转...总结 本文针对目标检测中的旋转增强提出两个贡献: 旋转增强后新的标签怎么生成的问题,提出了比最大框法更优的椭圆表示法 提出用于回归损失计算的旋转不确定损失RU Loss,进一步提升了效果

    43820

    必会算法:在旋转有序的数组中搜索

    大家好,我是戴先生 今天给大家介绍一下如何利用玄学二分法找出目标值元素 想直奔主题的可直接看思路2 ##题目 整数数组 nums 按升序排列,数组中的值互不相同 在传递给函数之前,nums...: 将数组第一个元素挪到最后的操作,称之为一次旋转 现将nums进行了若干次旋转 给你 旋转后 的数组 nums 和一个整数 target 如果 nums 中存在这个目标值 target 则返回它的下标...第一个想到的就应该是用二分法试试 下面我们来分析一下 一个增序的数组是这样的 旋转n次之后就是这样的 所以我们的目标就是在这样的数组里边找目标值 可以非常清晰的看到 第二段的所有值都是小于第一段的值...这样思路就非常清晰了 在二分查找的时候可以很容易判断出 当前的中位数是在第一段还是第二段中 最终问题会简化为在一个增序数据中的普通二分查找 我们用数组[1,2,3,4,5,6,7,8,9]举例说明 target...所以可以判断出 此时mid=4是处在第一段中的 而且目标值在mid=4的前边 此时,查找就简化为了在增序数据中的查找了 以此类推还有其他四种情况: mid值在第一段,且在目标值的前边 mid值在第二段

    2.8K20

    拥挤场景中的稳健帧间旋转估计

    、真实场景中摄像机旋转的方法。...内容概述 我们的目标是在给定{ui, vi, xi, yi}的情况下(其中(ui, vi)是光流矢量,(xi, yi)是它们在图像平面上的坐标),估计两帧之间的摄像机旋转。...考虑一个仅由摄像机旋转引起的光流场F,没有摄像机平移、运动物体或噪声。对于这样一个旋转场中的每个光流矢量,它提供了对可能的旋转集的两个约束,如图1所示。...在这种情况下,观察是光流矢量(在图像中的每个点),隐藏变量值是可能的旋转。...对于给定图像位置,这个旋转集合是SO(3)中的一维流形,由围绕某一轴旋转的单一旋转和绕另一轴旋转的任意角度的旋转组成。 该方法的实现可以采用透视投影的离散版本,生成一个曲线集合。 图2.

    17110

    【无监督学习最新研究】简单的「图像旋转」预测,为图像特征学习提供强大监督信号

    在我们的研究中,我们打算通过这种方式学习图像特征:训练卷积神经网络来识别被应用到作为输入的图像上的二维旋转。我们从定性和定量两方面证明,这个看似简单的任务实际上为语义特征学习提供了非常强大的监督信号。...我们自监督特征学习方法的核心观念是,如果一个人对图像中描述的对象没有概念,那么他就不能识别应用于它们的旋转 因此,最近人们对以无监督的方式学习高级的基于卷积神经网络的表征越来越感兴趣,这种方式避免了对视觉数据的手动注释...因此,卷积神经网络模型在识别四个图像旋转之一(见图2)的4种图像分类任务上进行了训练。...我们认为,为了让一个ConvNet模型能够识别应用于图像中的旋转变换,它需要理解图像中所描述的对象的概念(参见图1),例如它们在图像中的位置、类型和、姿势。...相反,在我们的方法中,卷积神经网络将一个单一图像作为输入,我们已经应用了一个随机几何变换(旋转),并经过训练(通过分类)识别这种几何变换,而不需要访问初始图像。 ?

    1.8K60

    图像中的几何变换

    图像几何变换概述 图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。...如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。这就需要进行一定的畸变校正。在进行目标物的匹配时,需要对图像进行旋转、平移等处理。...因此,图像几何变换是图像处理及分析的基础。 二. 几何变换基础 1. 齐次坐标: 齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行几何变换。...图像中的几何变换 1....试验结果: 1. 2D仿射变换举例:比如下左图,通过2D仿射变换,缩放,旋转,平移之后得到变换矩阵对该图片进行校正后的图像如右图: ?

    2.1K60
    领券