首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

高手系列!数据科学家私藏pandas高阶用法大全 ⛵

().count 与 Groupby().size 如果你想获得 Pandas 的一列的计数统计,可以使用groupby和count组合,如果要获取2列或更多列组成的分组的计数,可以使用groupby和...,用于使用纯文本编辑器创建格式化文本。...groupby对数据进行分组并统计每组的聚合统计信息,例如计数、平均值、中位数等。...DataFrame 在我们处理数据的时候,有时需要根据某个列进行计算得到一个新列,以便后续使用,相当于是根据已知列得到新的列,这个时候assign函数非常方便。...在以下示例中,创建了一个新的排名列,该列按学生的分数对学生进行排名: import pandas as pd df = pd.DataFrame({'Students': ['John', 'Smith

6.1K30

pandas分组聚合转换

Height Gender Female 170.2 63.0 Male 193.9 89.0  agg方法 groupby对象有一些缺点: 无法同时使用多个函数 无法对特定的列使用特定的聚合函数...无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入,先前提到的所有字符串都是合法的...,其中字典以列名为键,以聚合字符串或字符串列表为值 gb.agg({'Height':['mean','max'], 'Weight':'count'}) 使用自定义函数  在agg中可以使用具体的自定义函数...return x**e df['a'].apply(my_exp,e =3) # 结果 0 1000 1 8000 2 27000 Name: a, dtype: int64 题目:创建一个新的列...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中    import pandas as pd data =

12010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据城堡参赛代码实战篇(二)---使用pandas进行数据去重

    在上一篇文章中,小编带你使用pandas并结合官方给出的一卡通消费数据一步步计算得到了每个同学的恩格尔系数,主要介绍了groupby()和pivot_table()两个方法。...sum() 首先我们根据id和how两列对数据进行分组,并对分组结果中的amount列进行求和运算,返回最后的结果。...第二个参数是keep参数,pandas默认在去重时是去掉所有重复数据,使用keep参数可以让我们保留重复数据中的一条而删掉其他的数据,keep='last'表明保留重复数据中的最后一条,当然你也可以使用...接下来的工作就简单了,按照上一节提到的groupby方法,按照id列进行分组聚合就可以了,代码如下: library_count_df=library_df.groupby(['id'])['time_stamp...'].count() 这里,我们按照id列进行分组,并对返回结果中的time_stamp列进行计数处理,最终结果如下: id 0 13 1 1 10 3

    1.4K80

    Pandas数据聚合:groupby与agg

    本文将从基础概念、常见问题、常见报错及解决方案等方面,由浅入深地介绍如何使用Pandas的groupby和agg方法,并通过代码案例进行详细解释。...单列聚合 基本用法 对于单列数据的聚合,通常我们会先使用groupby方法指定分组依据,然后调用agg方法并传入具体的聚合函数。...常见的聚合函数包括sum()、mean()、count()、min()、max()等。 常见问题 重复值处理:当分组键存在重复值时,默认情况下会根据这些重复值创建新的分组。...可以通过设置dropna=False参数来保留这些行。 性能优化:对于大规模数据集,直接使用groupby可能会导致性能瓶颈。...同样使用groupby和agg方法,只需传入一个包含多个列名的列表即可。 常见问题 优先级设定:明确各列之间的优先关系非常重要。通常按照从高到低的重要性依次列出列名。

    42710

    groupby函数详解

    计算各列数据总和并作为新列添加到末尾 df['Col_sum'] = df.apply(lambda x: x.sum(), axis=1) 计算指定列下每行数据的总和并作为新列添加到末尾 df_sf...1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...,此时需指定axis=1,否则,groupby默认根据axis=0进行分组,而行数据由于类型不统一,故无法根据dtypes对列进行分组,结果为空。...,根据dtypes对列进行分组,此时,需指定axis=1,否则,groupby默认根据axis=0进行分组,而行数据由于类型不统一,故无法根据dtypes对列进行分组 #df.dtypes用于确定df的数据类型...,并希望根据分组计算列的总计: #创建分组的映射字典 mapping={ 'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange

    3.8K11

    Python数据分析作业二:Pandas库的使用

    然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。...161393.0 7、使用df中的数据分组统计每个人的交易额平均值(保留2位小数),将统计结果放入dff变量中并显示该结果 dff = df.groupby('姓名')['交易额'].mean().round...然后,使用.round(2)方法将平均值保留两位小数。最后,将结果存储在新的 Series 对象dff中。dff是一个包含每个姓名对应的平均交易额的 Series,其中索引是姓名,值是平均交易额。...', columns='柜台', values='交易额', aggfunc='sum') 使用pivot_table方法创建一个透视表,其中 “姓名” 列作为行索引,“柜台” 列作为列索引,“交易额”...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。

    10300

    【小白必看】Python爬虫数据处理与可视化

    df.describe() df.groupby('类型').count() 使用describe()方法对数据进行统计描述,包括计数、均值、标准差、最小值、最大值等 使用groupby()方法按'...类型'列进行分组,并使用count()方法统计每个分组的数量 数据可视化 font_path = 'caisemenghuanjingyu.ttf' # 替换为自定义字体文件的路径 custom_font...FontProperties对象custom_font 使用hist()方法绘制'类型'列的直方图 使用xlabel()方法设置x轴标签,并使用自定义字体 使用show()方法显示图形 数据筛选与排序...df.groupby('类型').count() # 使用groupby()方法按照类型列进行分组,然后使用count()方法统计每个分组中的数量 font_path = 'caisemenghuanjingyu.ttf...) # 显示图形 df[df.类型 == '玄幻魔法'].sort_values(by='推荐') # 对df进行筛选,只保留类型为'玄幻魔法'的行,并按照推荐列进行升序排序 df = pd.DataFrame

    18310

    初学者使用Pandas的特征工程

    因此,我们需要将该列转换为数字,以便所有有效信息都可以输入到算法中。 改善机器学习模型的性能。每个预测模型的最终目标都是获得最佳性能。改善性能的一些方法是使用正确的算法并正确调整参数。...为了达到我们的目的,我们将使用具有转换功能的groupby来创建新的聚合功能。...注意:我们可以对任何类别变量执行groupby函数,并执行任何聚合函数,例如mean, median, mode, count等。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。...没有传统的方式或类型可以创建新特征,但是pandas具有多种函数,可以使你的工作更加舒适。 我强烈建议你选择任何数据集,并自行尝试所有列出的技术,并在下面评论多少以及哪种方法对你的帮助最大。

    4.9K31

    首次公开,用了三年的 pandas 速查表!

    ,可指定国内源快速下载安装 pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple Conda 多 Python 版本环境: # 创建新环境...(col1)[col2] # 返回按列col1进行分组后,列col2的均值 # 创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 df.pivot_table(index=col1...() # groupby 分组+去重的值及数量 df.groupby('name').agg(['sum', 'median', 'count']) 12 数据合并 # 合并拼接行 # 将df2中的行添加到...df1的尾部 df1.append(df2) # 指定列合并成一个新表新列 ndf = (df['提名1'] .append(df['提名2'], ignore_index=True)...({'uu':'count'}) # 按周汇总 df.groupby(by=df.index.weekday).uu.count() # 按月进行汇总 df.groupby(['name', pd.Grouper

    7.5K10

    UCB Data100:数据科学的原理和技巧:第一章到第五章

    这将创建一个新的布尔值系列。...要向DataFrame添加新列,我们使用的语法与访问现有列时类似。通过写入df["column"]来指定新列的名称,然后将其分配给包含将填充此列的值的Series或数组。...假设我们想要找到最长的婴儿名字,并相应地对我们的数据进行排序。 3.4.1 方法 1:创建一个临时列 其中一种方法是首先创建一个包含名字长度的列。...一些有用的选项是: .mean:创建一个新的DataFrame,其中包含每个组的平均值 .sum:创建一个新的DataFrame,其中包含每个组的总和 .max和.min:创建一个新的DataFrame....count:创建一个新的DataFrame,其中包含条目数,不包括缺失值。

    69420

    整理了25个Pandas实用技巧

    一个字符串划分成多列 我们先创建另一个新的示例DataFrame: ? 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至DataFrame: ? Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ?...如果我们想要将第二列扩展成DataFrame,我们可以对那一列使用apply()函数并传递给Series constructor: ?...如果你想对某个类别,比如“Sex”,计算存活率,你可以使用groupby(): ? 如果你想一次性对两个类别变量计算存活率,你可以对这些类别变量使用groupby(): ?...最后,你可以创建交叉表(cross-tabulation),只需要将聚合函数由"mean"改为"count": ? 这个结果展示了每一对类别变量组合后的记录总数。

    2.8K40

    整理了25个Pandas实用技巧(下)

    ,以告诉pandas保留那些至少90%的值不是缺失值的列。...一个字符串划分成多列 我们先创建另一个新的示例DataFrame: 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...比如说,让我们以", "来划分location这一列: 如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至DataFrame: Series扩展成DataFrame 让我们创建一个新的示例...如果我们想要将第二列扩展成DataFrame,我们可以对那一列使用apply()函数并传递给Series constructor: 通过使用concat()函数,我们可以将原来的DataFrame和新的...最后,你可以创建交叉表(cross-tabulation),只需要将聚合函数由"mean"改为"count": 这个结果展示了每一对类别变量组合后的记录总数。

    2.4K10

    【Python】这25个Pandas高频实用技巧,不得不服!

    将一个字符串划分成多个列 我们先创建另一个新的示例DataFrame: df = pd.DataFrame({'name':['John Arthur Doe', 'Jane Ann Smith'],...比如说,让我们以", "来划分location这一列: df.location.str.split(', ', expand=True) 如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至...如果我们想要将第二列扩展成DataFrame,我们可以对那一列使用apply()函数并传递给Series constructor: df_new = df.col_two.apply(pd.Series...为了对多个函数进行聚合,你可以使用agg()函数,传给它一个函数列表,比如sum()和count(): orders.groupby('order_id').item_price.agg(['sum',...更改显示选项 我们再来看一眼Titanic 数据集: titanic.head() 注意到,Age列保留到小数点后1位,Fare列保留到小数点后4位。

    6.6K50

    【数据处理包Pandas】数据透视表

    补充:reindex用法 reindex的作用是创建一个符合新索引的新对象(默认不会修改原对象df2),它的一个用途是按新索引重新排序。...df2.reindex([(2016,1),(2017,2)]) 当现有数据无法匹配新的索引时,reindex将使用NaN填充。...,它可以根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。...数据透视表的效果可以通过groupby来实现,但有时候直接使用pivot_table方法建立数据透视表可能更方便些,而且额外提供了汇总功能。...columns:指定列索引。 aggfunc:指定聚合函数,默认为均值(‘mean’),也可以是 ‘sum’、‘count’、‘min’、‘max’ 等。 fill_value:用于替换缺失值的值。

    7400

    python数据分析——数据分类汇总与统计

    例如,我们可以按照学生的性别进行分组,并计算每个性别的学生人数: gender_count = df.groupby('Gender')['Name'].count() print(gender_count...例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...下表是经过优化的groupby方法: 在使用groupby进行分组后,可以使用以下聚合函数进行数据聚合: count():计算每个分组中的非缺失值的数量。...groupby的聚合函数 首先创建一个dataframe对象: 示例一 【例8】使用groupby聚合函数对数据进行统计分析。...它可以根据某些列的值将数据重塑为新的形式,使之更易于分析和理解。下面详细解释pivot()函数的用法和参数。

    14610

    Pandas高级数据处理:交互式数据探索

    可以使用 df.duplicated() 检测重复行,并使用 df.drop_duplicates() 删除重复行。常见问题:重复行未被检测到:有时数据中的某些列是唯一的,但其他列存在重复。...通过 groupby() 方法,可以根据一个或多个列对数据进行分组,并对每个分组应用聚合函数(如 mean()、sum()、count() 等)。...可以通过传递多个列名给 groupby() 方法实现多级分组。此外,还可以使用 agg() 方法对不同列应用不同的聚合函数。...代码案例:# 按 'category' 和 'sub_category' 列分组,并对不同列应用不同的聚合函数result = df.groupby(['category', 'sub_category...可以通过 plt.subplots() 创建多个子图,并调整布局参数。

    11410

    『数据分析』pandas计算连续行为天数的几种思路

    这里我们用北京空气质量数据作为案例进行演示,需求是找出北京空气质量连续污染最长持续多久并确定其周期。 ?...思路2:比对相邻两天空气质量标记 思路2有两种解法,其一是利用循环创建辅助列,其二是利用shift和cumsum创建辅助列,具体我们可以往下看。...解法1:利用循环创建辅助列 创建一个辅助列,辅助列的值按照以下思路创建函数获取 如果空气质量为优良,则辅助列值+1;若当前空气质量和上一日不同,则辅助列值也+1 以上均不满足,则辅助列值不变 last...aqi.groupby(groupids).agg( { 'time': lambda x:f'{x.min()}~{x.max()}', '空气质量':"count",...图8:思路2的解法1结果 解法2:利用shift和cumsum创建辅助列 先创建空气质量的shift列,下移动一位 如果shift列和空气质量列相等,则判断列为0,否则为1 辅助列为判断列累加求和 ?

    7.7K11
    领券