一、算法描述
模糊聚类算法是一种基于函数最优方法的聚类算法,使用微积分计算技术求最优代价函数.在基于概率算法的聚类方法中将使用概率密度函数,为此要假定合适的模型.模糊聚类算法中向量可以同时属于多个聚类,...从而摆脱上述问题.在模糊聚类算法中,定义了向量与聚类之间的近邻函数,并且聚类中向量的隶属度由隶属函数集合提供.对模糊方法而言,在不同聚类中的向量隶属函数值是相互关联的.硬聚类可以看成是模糊聚类方法的一个特例...
% 如果输入参数个数是二那么就调用默认的option;
if length(options) 的opition数少于4个那么其他用默认值; ...k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U,cluster_n, expo); ...(data, U, cluster_n,expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
%