,数据加载器,调试,不同的平台支持,分布式训练等等。
我们不确定是否能对框架的整体性能提出任何建议,因为本项目主要还是在演示如何在不同的框架中创建相同的神经网络。...例如:汽车图像的相关参数 y=(0,1,0,0,0,0,0,0,0,0),其标签是= [飞机,汽车,鸟,猫,鹿,狗,青蛙,马,船 ,卡车]
在IMDB数据集上训练RNN(GRU,门控循环单元)
性能对比...这样对CNTK框架有点不公平,因为会低估了它的能力。
分类模型创建大小为(150x125)的嵌入矩阵,然后采用100个门控循环单元,并将最终输出(不是输出序列也不是隐藏状态)作为输出。...在这个例子中,速度的提高是微不足道的,因为整个数据集都是作为NumPy数组加载到RAM中的,而且在处理的时候每个迭代的数据都是随机的。我怀疑框架的生成器是异步执行随机的。...对于我们会进行的输入输出活动以及可能在运行中进行预处理和数据增强的情况,自定义的生成器将对性能产生更大的影响。