首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

无法让默认微调器工作-为什么?

无法让默认微调器工作可能有以下几个原因:

  1. 软件版本不兼容:默认微调器可能需要特定版本的软件才能正常工作。检查所使用的软件版本是否符合要求,并尝试升级到兼容的版本。
  2. 配置错误:检查默认微调器的配置是否正确。可能需要指定正确的参数或设置适当的权限才能使其正常工作。
  3. 资源不足:默认微调器可能需要一定的计算资源才能运行。确保所使用的计算环境具备足够的CPU、内存和存储空间等资源。
  4. 冲突问题:默认微调器可能与其他组件或插件存在冲突,导致无法正常工作。尝试禁用其他可能造成冲突的组件,并重新启动系统或应用程序。
  5. Bug或故障:默认微调器可能存在Bug或故障,导致无法正常工作。在这种情况下,建议联系软件开发商或厂商的技术支持团队,寻求他们的帮助和解决方案。

请注意,由于本回答要求不能提及特定的云计算品牌商,因此无法推荐腾讯云相关产品和产品介绍链接地址。如果您需要进一步了解腾讯云的相关产品和解决方案,建议访问腾讯云官方网站或与他们的销售团队联系。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • ICML 2024 | 冷静看待大型语言模型在材料发现中的作用

    今天为大家介绍的是来自Geoff Pleiss团队的一篇论文。自动化是当代材料发现的基石之一。贝叶斯优化(BO)是这种工作流程中的重要部分,使科学家能够利用先验领域知识高效地探索庞大的分子空间。尽管这些先验知识可以采取多种形式,但围绕大型语言模型(LLM)所包含的辅助科学知识有着显著的关注。然而,现有的工作迄今为止仅探讨了LLM在启发式材料搜索中的应用。实际上,最近的研究从点估计的非贝叶斯LLM中获得了不确定性估计,这是BO的核心部分。在本研究中,作者探讨了LLM是否真的有助于加速分子空间中基于原则的贝叶斯优化。作者采取冷静而客观的态度回答这一问题。具体来说,通过(i)将LLM视为标准但基于原则的BO代理模型的固定特征提取器,以及(ii)利用参数高效的微调方法和贝叶斯神经网络来获得LLM代理模型的后验分布。作者通过真实化学问题的广泛实验表明,LLM在分子BO中是有用的,但前提是它们经过了领域特定数据的预训练或微调。

    01

    ECCV2022|凯明大神团队出品:一种用于目标检测的主流ViT架构,效果SOTA(已开源)

    今年3月30日,何恺明大神团队在ArXiv上发布了最新研究工作,目前该工作已被ECCV2022所录用,该工作主要研究了一种适用于目标检测任务的非层次化结构主流骨干网络ViTDet。该研究表明ViTDet无需重新设计用于预训练的分层主干网络,只对传统的FPN模块最后一个Stage进行微调(简化处理)即可。实验结果表明:若使用MAE(恺明大神一作提出的无监督学习方法)进行预训练,则ViTDet可以与之前强具竞争力的层次化主干网络(Swin和 MViTv2)的性能相匹敌。其中ViTDet+MAE仅在ImageNet-1K上进行预训练然后直接进行迁移便可以在COCO数据集上达到61.3 AP的性能。

    03

    速度提升5.8倍数 | 如果你还在研究MAE或许DailyMAE是你更好的选择,更快更强更节能!!!

    自监督学习(SSL)在机器学习中代表了转变性的飞跃,通过利用未标记数据来进行有效的模型训练[3, 4, 20, 22, 31, 32, 33, 34]。这种学习范式得益于大规模数据集,以学习丰富表示用于小样本学习[8]和迁移学习[13, 23]。互联网上大量的未标记数据激发了对深度神经网络模型在大数据集上训练的需求。目前,SSL的成功通常需要在高性能计算集群(HPC)[8, 11, 17]上训练数周。例如,iBOT [47]在16个V100上训练了193小时,用于ViT-S/16。这些计算不包括在开发SSL框架时测试不同假设所需要的时间,这些假设需要在ImageNet-1K[36]的适当规模上进行测试,ImageNet-1K拥有120万个样本,并且需要相当数量的迭代。因此,高效的预训练配方被高度期望以加速SSL算法的研究,例如,超参数调整和新算法的快速验证。为了减少训练时间,一些研究人员在ImageNet-1K[36]的子集上训练他们的模型,例如10%的样本[3]。然而,当模型扩展到大型数据集时,可能会存在性能差距,即在小数据集上表现成熟的模型可能无法处理复杂问题上的多样性。

    01

    LM4LV:用于低级视觉任务的冻结大型语言模型

    大语言模型(LLM)的巨大成功和推广性带来了多模态大型语言模型(MLLM)的新研究趋势。我们想知道 LLM 可以给计算机视觉带来多大的好处,以实现更好的性能并实现真正的智能。最近对 MLLM 的尝试在图像字幕和视觉问答 (VQA) 等高级视觉任务上展示了很好的结果。然后我们对它在低级视觉任务上的能力感到好奇,比如图像去噪和去雨。另一方面,由于现有的工作已经证明LLM已经可以理解语义图像特征,那么它们距离直接生成图像作为生成模型还有多远?所有这些都集中到同一个问题:是否可以利用 MLLM 来接受、处理和输出低级特征?这对于进一步突破 MLLM 和低级视觉的极限非常重要。我们将在这项工作中进行初步的探索。

    01

    ICCV2023-AlignDet:在各种检测器的所有模块实现无监督预训练

    大规模预训练后再进行下游微调的方法已经被广泛地应用于各种目标检测算法中。在本文中,我们揭示了目前实践中预训练和微调过程之间存在的数据、模型和任务方面的差异,这些差异隐式地限制了检测器的性能、泛化能力和收敛速度。为此,我们提出了AlignDet方法,这是一个通用的预训练框架,可以适配各种现有检测器,以减轻这些差异。AlignDet将预训练过程分解为两个阶段,即图像域预训练阶段和框域预训练阶段。图像域预训练优化检测骨干网络以捕获整体的视觉抽象,框域预训练学习实例级语义和任务感知概念以初始化骨干网络之外的部分。通过融合自监督预训练的骨干网络,可以实现在各种检测器中所有模块进行无监督预训练。如图1所示,大量实验表明,AlignDet可以实现对各种协议进行显著改进,如检测算法、模型骨干网络、数据设置和训练计划。例如,在更少的训练轮数下,AlignDet分别为FCOS提高了5.3 mAP,RetinaNet提高了2.1 mAP,Faster R-CNN提高了3.3 mAP,DETR提高了2.3 mAP。

    03

    伪排练:NLP灾难性遗忘的解决方案

    有时,你需要对预先训练的模型进行微调,以添加新标签或纠正某些特定错误。这可能会出现“灾难性遗忘”的问题。而伪排练是一个很好的解决方案:使用原始模型标签实例,并通过微调更新进行混合。 当你优化连续两次的学习问题可能会出现灾难性遗忘问题,第一个问题的权重被用来作为第二个问题权重的初始化的一部分。很多工作已经进入设计对初始化不那么敏感的优化算法。理想情况下,我们的优化做到最好,无论权重如何初始化,都会为给定的问题找到最优解。但显然我们还没有达到我们的目标。这意味着如果你连续优化两个问题,灾难性遗忘很可能发生。 这

    06

    Frustratingly Simple Few-Shot Object Detection

    从几个例子中检测稀有物体是一个新兴的问题。 先前的研究表明元学习是一种很有前途的方法。 但是,精细的调音技术没有引起足够的重视。 我们发现,仅微调现有检测器的最后一层稀有类是至关重要的少数射击目标检测任务。 这种简单的方法比元学习方法的性能要高出约2 ~ 20点,有时甚至是之前方法的准确度的两倍。 然而,少数样本中的高方差往往会导致现有基准测试的不可靠性。 基于PASCAL VOC、COCO和LVIS三个数据集,我们通过对多组训练实例进行采样来修改评估协议,以获得稳定的比较,并建立新的基准。 同样,我们的微调方法在修订后的基准上建立了一个新的最先进状态。

    02

    普林斯顿 & AWS & Apple 提出 RAVEN | 多任务检索增强视觉-语言模型框架,突破资源密集型预训练的限制 !

    NLP模型规模快速增长,正如OpenAI的LLM发展所示,从GPT-2的15亿参数到GPT-3的1750亿(Brown et al., 2020),再到GPT-4的超一万亿,这引起了越来越多的关注。这一趋势需要更多的数据和计算能力,导致更高的碳排放,并为资源较少的研究行人带来重大障碍。作为回应,该领域正在转向如检索增强生成等方法,该方法将外部非参数的世界知识融入到预训练的语言模型中,无需将所有信息直接编码到模型的参数中。然而,这种策略在视觉-语言模型(VLMs)中尚未广泛应用,这些模型处理图像和文本数据,通常更加资源密集型。此外,VLMs通常依赖如LAION-5B 这样的大规模数据集,通过检索增强提供了显著提升性能的机会。

    01
    领券