首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【猫狗数据集】对一张张图像进行预测(而不是测试集)

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou.../p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com...www.cnblogs.com/xiximayou/p/12489069.html 使用预训练的resnet18模型:https://www.cnblogs.com/xiximayou/p/12504579.html 计算数据集的平均值和方差...:https://www.cnblogs.com/xiximayou/p/12507149.html 读取数据集的第二种方式:https://www.cnblogs.com/xiximayou/p/12516735...:") print(output_labels) 说明:这里需要注意的地方有: 图像要调整到网络输入一致的大小,即224×224 将【高,宽,通道】要转换成【通道,高,宽】的格式 输入的是【batchsize

    77630

    医学图像开源数据集汇总

    FASCICLE 小腿肌肉超声数据集 数据集链接:http://m6z.cn/631rex FAscicle 小腿肌肉超声数据集是一个由 812 幅小腿肌肉超声图像组成的数据集,用于分析肌肉弱点并预防受伤...肿瘤数据集 数据集链接:http://m6z.cn/5zCyGj 这一数据集是通过仔细注释几名患有不同器官肿瘤并在多家医院被诊断出的患者的组织图像获得的。...结直肠腺癌组织学图像数据集 数据集链接:http://m6z.cn/6axBLk 该数据集包含 100 张 H&E 染色的结直肠腺癌组织学图像。...淋巴结切片的组织病理学数据集 数据集链接:http://m6z.cn/6axBNq 本数据集由从淋巴结切片的组织病理学扫描中提取的 327.680 张彩色图像 (96 x 96px) 组成。...m2caiSeg腹腔镜图像数据集 数据集链接:http://m6z.cn/5yW8q0 m2caiSeg是根据真实世界外科手术的内窥镜视频源创建的。

    1.5K10

    单图像预测

    from imageai.Prediction import ImagePrediction #导入ImageAI相关模块用于图像预测import os #用于文件路径处理 import time...#用于程序运行计时 import cv2 #开始计时 start_time=time.time() #获取当前路径,其中包含需要预测的图像以及训练好的模型文件等 execution_path=os.getcwd...Users/xpp/Desktop/resnet50_weights_tf_dim_ordering_tf_kernels.h5")) #加载模型 prediction.loadModel() ''' 对图像进行测试并输出...5个预测的可能结果 result_count用于设置想要的预测结果的数量(参数范围为[1,100]) predictImage()函数将返回预测的对象名和相应的百分比概率 ''' img=cv2.imread...Total time cost: 11.468282222747803 wig:3.7129808217287064 Total time cost: 11.468282222747803 算法:单图像预测是由各种不同算法构建而成的预测器对输入图像或视频帧进行分析解构并返回物体对象名和相应百分比概率

    21920

    自然图像目标检测数据集汇总

    ,关于图像分类、定位、检测等研究工作大多基于此数据集展开。...Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。...Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。...,但是标注难免会有错误,几乎每年都会对错误的数据进行修正或是删除,建议下载最新数据集并关注数据集更新。?...目标检测给定一幅图像,算法需要生成多组(ci,si,bi)形式的预测信息,其中ci为类别标签、si为置信度、bi为边框信息。

    2.4K40
    领券