为什么用关系型数据库?最常见的理由是别人在用,所以我也得用,但是这个并不是理由,而是借口。
作为腾讯唯一的时序数据库,CTSDB 支撑了腾讯内部20多个核心业务(微信彩票、财付通、云监控、云数据库、云负载等)。
在性能测试中,需要根据具体的性能需求和系统架构等情况,采用不同的测试策略,其中最常见的策略就有容量测试。这篇文章,就来聊聊容量测试以及容量规划的一些内容。。。
2021年11月22日,南方电网数字电网研究院有限公司发布《2021年南网数研院平台安全分公司数据中心升级完善二期(电能量平台融合改造、分节点云化等)项目存储计算组件和时序数据库采购公示公告》,采购方式单一来源。 项目概况:根据网公司云化数据中心主分节点建设安排,数据中心升级完善二期(电能量平台融合改造、分节点云化等)在原有数据中心升级完善一期项目及二期(数据湖、云化及服务组件层)建设的基础上,完善了数据中心数据处理及服务能力。本项目对数据中心存储计算组件进行扩容,新增913套存储计算组件,预算3652万元
12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态,企业如何与开源社区紧密配合,实现共赢。
今天分享一篇时序数据库Survey,《Time Series Management Systems: A Survey》,2017 年 TKDE 的。作者 Søren Kejser Jensen, Torben Bach Pedersen, Senior Member, IEEE, Christian Thomsen,丹麦奥尔堡大学。他们在 2018 年有一篇时序数据库的论文: ModelarDB:Modular + Model。
随着物联网的普及和工业技术的不断发展,高效管理海量时间序列的需求越来越广泛,数据量越来越庞大。时间序列主要分为两种,即单元时间序列和多元时间序列。单元时间序列是指一个具有单个时间相关变量的序列,单元时间序列只包含一列时间戳和一列值。多元时间序列是指一个具有多个时间相关变量的序列,多元时间序列包含多个一元时间序列作为分量,各个一元时间序列的采样时间点相同,所以数据可以用矩阵形式表示,每行为一个时间点,每列为一个一元时间序列。
物联网系统中,需要实时处理的数据可通过队列送入流处理引擎;不需要实时处理的数据,用于离线分析或数据挖掘,需要先存储起来。物联网系统的数据存储的方式很多,要根据实际场景来选择。
微博广告基础架构团队负责人、技术专家,商业大数据平台及智能监控平台发起人,目前负责广告核心引擎基础架构、Hubble智能监控系统、商业基础数据平台(D+)等基础设施建设。关注计算广告、大数据、人工智能、高可用系统架构设计、区块链等方向。在加入微博之前,曾就职于百度负责大数据平台建设,曾担任趣点科技联合创始人兼CTO等职位。毕业于西北工业大学,曾在国内外知名期刊发表多篇学术论文,拥有9项发明专利。
从容器技术的推广以及 Kubernetes成为容器调度管理领域的事实标准开始,云原生的理念和技术架构体系逐渐在生产环境中得到了越来越广泛的应用实践。在云原生的体系下,面对高度的弹性、动态的应用生命周期管理以及微服务化等特点,传统的监控体系已经难以应对和支撑,因此新一代云原生监控体系应运而生。
一、IoTDB的研发背景 (一)IoTDB的发展历程 IoTDB是由清华大学大数据软件团队于2016年开始开发的一个物联网数据库项目,旨在满足大规模物联网和工业物联网应用的数据、存储和分析需求。2018年11月,IoTDB进入了Apache孵化器,开始了它的开源之旅。在孵化期间,IoTDB吸引了来自全球的贡献者和用户,并与其他Apache项目如Spark和Hadoop进行了无缝集成。2020年9月,IoTDB正式成为Apache顶级项目,并获2020年北京市科技进步一等奖。2021年10月,IoTDB受邀参
本项目由涛思数据投递并参与“数据猿年度金猿策划活动——2022大数据产业创新技术突破榜单及奖项”评选。
2017年时序数据库忽然火了起来。开年2月Facebook开源了beringei时序数据库;到了4月基于PostgreSQL打造的时序数据库TimeScaleDB也开源了,而早在2016年7月,百度云在其天工物联网平台上发布了国内首个多租户的分布式时序数据库产品TSDB,成为支持其发展制造,交通,能源,智慧城市等产业领域的核心产品,同时也成为百度战略发展产业物联网的标志性事件。时序数据库作为物联网方向一个非常重要的服务,业界的频频发声,正说明各家企业已经迫不及待的拥抱物联网时代的到来。 本文会从时序数据
经过前面几章的讨论相信你对类目和商品体系有了一定的认识。众所周知,建立类目体系的目的是为了更好地管理和维护商品。建立商品的唯一目的就是销售。从最基础的目的出发,要销售一个商品已经达到了。但事实上为了更好的销售商品,需要一些销售手段,也就是促销了。今天,我们一起来聊一聊促销的主流玩儿法,然后再谈谈促销的设计。
2月19日,,就 Apache IoTDB 的核心技术及典型应用场景进行了直播分享探讨,分别是 Apache IoTDB:基于开放数据文件格式的时序数据库、IoTDB 在阿里云智能制造业务中的实践、智能运维场景中的时序数据库选型与挑战、时序数据库IoTDB在360的落地实践这4个主题。
在本文中,我们将探讨如何设计一个可扩展的指标监控和告警系统。一个好的监控和告警系统,对基础设施的可观察性,高可用性,可靠性方面发挥着关键作用。
背景 目前对于时序大数据的存储和处理往往采用关系型数据库的方式进行处理,但由于关系型数据库天生的劣势导致其无法进行高效的存储和数据的查询。时序大数据解决方案通过使用特殊的存储方式,使得时序大数据可以高效存储和快速处理海量时序大数据,是解决海量数据处理的一项重要技术。该技术采用特殊数据存储方式,极大提高了时间相关数据的处理能力,相对于关系型数据库它的存储空间减半,查询速度极大的提高。时间序列函数优越的查询性能远超过关系型数据库,Informix TimeSeries非常适合在物联网分析应用。 定义 时间
双11的硝烟已经弥漫在每个角落——不只是互联网,还有线下实体;不只是内地市场,还有香港台湾等境外市场;不只是促销大战,而是在产品、体验、服务和物流等维度共同发力。更重要的是,今年双11不再将不断提升GMV当做唯一目标,而是把应用新技术、推动新模式当做重点。天猫刚刚举办的一个活动体现了这一点。 11月3日,双十一进入一周倒计时,天猫邀请了几十家全球顶尖科技公司搞了一场“T20”峰会,全称为天猫双11全球创智生态峰会,参会者包括Intel,CES、iRobot、戴森、BOSE、惠人、飞利浦、博朗、BEATS、H
原创文字,IoTDB 社区可进行使用与传播基于IoTDB 平台的学习和研究_应用_芯动大师_InfoQ写作社区
https://blog.csdn.net/ransom0512/article/details/78114167
下文整理自清华大学大数据能力提升项目能力提升模块课程“Innovation & Entrepreneurship for Digital Economy”(数字经济创新创业课程)的精彩内容。 主讲嘉宾: Kris Singh: CEO at SRII, Palo Alto, California Visiting Professor of Tsinghua University Yingbo Liu, Associate Research Fellow of School of Software, Tsin
在大型微服务架构中,服务监控和实时分析需要大量的时序数据。存储这些时序数据最高效的方案就是使用时序数据库 (TSDB)。设计时序数据库的重要挑战之一便是在效率、扩展性和可靠性中找到平衡。这篇论文介绍的是 Facebook 内部孵化的内存时序数据库,Gorilla。Facebook 团队发现:
Hive和HBase是两个在大数据领域中被广泛使用的开源项目,它们各自适用于不同的场景,但也可以在某些情况下结合使用。以下是Hive和HBase在不同场景下的应用示例:
互联网服务可以将用户的网络延迟数据、业务服务指标数据、日志数据等写进CTSDB数据库。然后由时序数据库直接生成报表以供技术产品做分析,尽早的发现、解决问题。
数据库的模型包含关系型、key-value 型、Document 型等很多种,那么为什么新型的时序数据库成为监控数据存储的新宠呢? 下面就会从
什么是时间序列数据(Time Series Data,TSD,以下简称时序)从定义上来说,就是一串按时间维度索引的数据。用描述性的语言来解释什么是时序数据,简单的说,就是这类数据描述了某个被测量的主体在一个时间范围内的每个时间点上的测量值。它普遍存在于IT基础设施、运维监控系统和物联网中。
回想起来,第一次对文件格式有直接的认识,还是在很久很久以前那个MP3随身听流行的年代。那时候,一个MP3随身听的容量通常是128MB;一首.mp3格式的音乐大约为4MB。我是个杰伦粉,当时杰伦发行了大约60首歌曲,而我最大的愿望是在MP3随身听里存下所有杰伦的歌曲。很明显,128MB的随时听最多也只能存30首歌曲,苦恼的博主在一番探索之后,发现手里的MP3播放器不仅能播放.mp3的音乐,还能播放.wma格式的歌曲;而且,一首wma格式的音乐大小只有2MB!有了这个办法,我终于不用每周更换一次MP3里的歌曲了...
时间序列是在特定时间点的一系列测量。例如温度、股票价格、汽车速度、流速、CPU 使用率等,通常在某个时间点观察,然后也在某个时间点存储。例如测量每天早上 8 点的温度,并把将其放在一些测量日志之中,这样每个数据点会对应特定的日期。将数据与时间联系在一起,例如将日期作为横轴,将数据点绘制成为曲线会展现出其他信息,例如温度变化的趋势。
时序数据库,全称为时间序列数据库,主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据。这些数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生。这些工业数据的典型特点是产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。
之前两篇文章笔者分别从TSM File文件存储格式、倒排索引文件存储格式这两个方面对InfluxDB最基础、最底层也最核心的存储模块进行了介绍,接下来笔者会再用两篇文章在存储文件的基础上分别介绍InfluxDB是如何处理用户的写入(删除)请求和读取请求的。在阅读这两篇文章之前,强烈建议看官先行阅读之前的多篇文章,不然可能会有一定的阅读障碍。
复杂而又变化多端的中高频量价因子的研究和开发已经成为众多量化私募最重要的工作之一。DolphinDB作为一个一站式的时序数据存储、分析和实时计算平台,可以帮助金工和IT人员将复杂的因子快速转化成能在研发或生产环境中高效运行的计算机脚本。
先来介绍什么是时序数据。时序数据是基于时间的一系列的数据。在有时间的坐标中将这些数据点连成线,往过去看可以做成多纬度报表,揭示其趋势性、规律性、异常性;往未来看可以做大数据分析,机器学习,实现预测和预警。
数据库与大数据一直是技术圈的两个常青领域。PC 时代诞生了最早的关系型数据库,之后数据类型越来越多,出现了各种非关系型数据库。云时代拉开序幕的同时,“大数据”一词也被广泛使用,涵盖海量数据的采集、处理、存储、分析和呈现的系列流程。大模型席卷而来的当下,许多数据库、数据分析处理引擎纷纷寻求与 AI 技术的结合点,试图找到更新、更切合未来发展的创新点……
Machbase 是一个针对工业物联网优化的超快时序数据库管理系统,提供数据合并和监控功能。 此外,它可以有效地构建边缘计算环境。Machbase Edge Edition 旨在即使嵌入在资源有限的小型设备中也具有高速处理性能。通过嵌入众多小型设备中的边缘版,可以通过收集和处理生产现场产生的所有数据来构建完美的边缘计算基础设施。Machbase Edge Edition 是边缘计算的最佳解决方案。
智慧健康养老服务管理系统是北京怡养科技有限公司的建设项目,是内嵌智能家居、健康管理、综合评估、服务管理、呼叫中心、决策支持等模块在内的专业养老服务管理系统。基于老年人健康数据,以老年人综合评估管理和老年人风险预测分析模型与专家系统为技术支持,整合养老服务资源,为老年人提供精细化、专业化的照护管理计划和个人健康档案管理。
在上篇文章《时序数据库体系技术 – 时序数据存储模型设计》中笔者分别介绍了多种时序数据库在存储模型设计上的一些考虑,其中OpenTSDB基于HBase对维度值进行了全局字典编码优化,Druid采用列式存储并实现了Bitmap索引以及局部字典编码优化,InfluxDB和Beringei都将时间线挑了出来,大大降低了Tag的冗余。在这几种时序数据库中,InfluxDB无疑显的更加专业。接下来笔者将会针对InfluxDB的基本概念、内核实现等进行深入的分析。本篇文章先行介绍一些相关的基本概念。 InfluxDB
数据猿导读 今年双11之后,一份《双十一网购大数据分析报告》备受业界关注,并被多家媒体转载、引用。一时之间,报告发布方——星图数据也被推到了大众眼前,引来关注无数。近日,数据猿记者走访了星图数据,了解
随着信息技术的飞速发展,企业数据量呈现爆炸式增长。对于像网易这样规模庞大的互联网公司,无论是内部办公系统还是外部提供的服务,每天都会产生大量的日志和时序数据。这些数据已成为故障排查、问题诊断、安全监测、风险预警以及用户行为分析及体验优化的重要基石。充分挖掘这些数据的价值,有利于提升产品的可靠性、性能、安全性以及用户满意度。
OpenTSDB 是基于 HBase 的可扩展、开源时间序列数据库(Time Series Database),可以用于存储监控数据、物联网传感器、金融K线等带有时间的数据。它的特点是能够提供最高毫秒级精度的时间序列数据存储,能够长久保存原始数据并且不失精度。它拥有很强的数据写入能力,支持大并发的数据写入,并且拥有可无限水平扩展的存储容量。目前,阿里云 HBase 产品是直接支持 OpenTSDB 组件的。
笔者近两年都在做智能营销方面的探索,不过最近想稍微切换自己的研究赛道,所以最近想把智能营销方面细枝末节的一些思考发出来。 关于活动、节假日、促销等营销方式的因果效应评估前篇是《活动、节假日、促销等营销方式的因果效应评估——特征工程篇(一)》是把给入模型时特征加工的方式列举一下,本篇是想简单总结如何评价一个活动营销方式的好坏;当然方法本身不胜枚举,只能在有限视野里面进行归纳。
本文旨在介绍 vivo 内部的特征存储实践、演进以及未来展望,抛砖引玉,吸引更多优秀的想法。
近几年IoT、IIoT、AIoT和智慧城市快速发展,时序/时空数据库成为数据架构技术栈的标配。根据国际知名网站DB-Engines数据,时序数据库在过去24个月内排名高居榜首,且远高于其他类型的数据库,可见业内对时序数据库的需求迫切。
我们知道zabbix在监控界占有不可撼动的地位,功能强大。但是对容器监控显得力不从心。为解决监控容器的问题,引入了prometheus技术。
这是一篇阿里妈妈的论文【KDD’23 | 转化率预估新思路:基于历史数据复用的大促转化率精准预估】 常规的销量预测,遇到一些特大事件,直播、大促,一般很难预估得准确。而且现在电商机制也比较多样,预售、平台折扣等。 本篇可能适合一些特殊时间点进行转化预测的场景。
InfluxDB是一个开源的、高性能的时序型数据库,在时序型数据库DB-Engines Ranking上排名第一。
领取专属 10元无门槛券
手把手带您无忧上云