首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python-排序-有哪些时间复杂度为O(n)的排序算法?

    前几篇文章介绍了几个常用的排序算法:冒泡、选择、插入、归并、快速,他们的时间复杂度从 O(n^2) 到 O(nlogn),其实还有时间复杂度为 O(n) 的排序算法,他们分别是桶排序,计数排序,基数排序...你可能会问了,假如桶的个数是 m,每个桶中的数据量平均 n/m, 这个时间复杂度明明是 m*(n/m)*(log(n/m)) = n log(n/m),怎么可能是 O(n) 呢 ?...这个问题非常好,原因是这样的,当桶的个数 m 接近与 n 时,log(n/m) 就是一个非常小的常数,在时间复杂度时常数是可以忽略的。...比如极端情况下桶的个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为是 O(n)。...O(n),因此使用基数排序对类似这样的数据排序的时间复杂度也为 O(n)。

    1.5K20

    【转】算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度。这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。 O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。...比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。...再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

    1.2K10

    常见算法的时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

    比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表的意思! 我在面试的时候,就发现有人连 O(1) 代表什么意思都搞不清楚!...常见的算法举例:遍历算法。 ? O(n^2) 就代表数据量增大 n 倍时,耗时增大 n 的平方倍,这是比线性更高的时间复杂度。...O(logn) 当数据增大 n 倍时,耗时增大 logn 倍(这里的 log 是以 2 为底的,比如,当数据增大 256 倍时,耗时只增大 8 倍,是比线性还要低的时间复杂度)。...常见的时间复杂度有:常数阶 O(1),对数阶 O(log2n),线性阶 O(n),线性对数阶 O(nlog2n),平方阶 O(n2),立方阶 O(n3),…,k 次方阶 O(nk),指数阶 O(2n)...常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见的算法时间复杂度举例。

    8.5K21

    又一个,时间复杂度为O(n)的排序!

    桶排序(Bucket Sort),是一种时间复杂度为O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度是O(n)。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...上图所示: (1)待排序的数组为unsorted[16]; (2)桶空间是buket[10]; (3)扫描所有元素之后,元素被放到了自己对应的桶里; (4)每个桶内,使用插入排序,保证一直是有序的; 例如...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。

    1K30

    算法复杂度O(1),O(n),O(logn),O(nlogn)的含义

    首先o(1), o(n), o(logn), o(nlogn)是用来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 时间复杂度为O(n)—线性阶,就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。...n*(n-1) 时间复杂度O(logn)—对数阶,当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...index = a; a = b; b = index; //运行一次就可以得到结果 时间复杂度的优劣对比常见的数量级大小:越小表示算法的执行时间频度越短,则越优; O(1)O(logn)O(n)O(nlogn)O(n2)O(n3)O(2n)//2的n方O(n!)

    7.1K30

    【算法复习3】时间复杂度 O(n) 的排序 桶排序 计数排序基数排序

    对要排序的数据要求很苛刻 重点的是掌握这些排序算法的适用场景 【算法复习3】时间复杂度 O[n] 的排序 桶排序 计数排序基数排序 桶排序(Bucket sort) 时间复杂度O(n) 苛刻的数据...桶内排完序之后,再把每个桶里的数据按照顺序依次取出, 组成的序列就是有序的了。 时间复杂度O(n) n个数据分到 m 个桶内,每个桶里就有 k=n/m 个元素。...每个桶内部使用快速排序,时间复杂度为 O(k * logk) m 个桶排序的时间复杂度就是 O(m * k * logk) 当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,...除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。...评论区大佬的总结 总结:桶排序、计数排序、基数排序 一、线性排序算法介绍 1.线性排序算法包括桶排序、计数排序、基数排序。 2.线性排序算法的时间复杂度为O(n)。

    1.9K10

    求m的n次方(优化时间复杂度)

    卷哥心想这问的什么问题,过流程的吗? 面试官眉头紧皱: 看面试官的意思是对卷哥解法的时间复杂度不太满意,卷哥想了15分钟没想出来; 卷哥:卒 题解 正常循环求m的n次方,时间复杂度为O(n)。...如果为奇数n则时间复杂度为O(n/2-1),偶数n就是O(n/2) 代码如下: public int process(int m,int n){ int index = n/2,...= 0){ result *= m; } return result; } 那还有没有时间复杂度更低的算法?...上面我们是固定的两个值缩减,效率固定了就是O(n/2),我们再分析一下:求平方的m值是固定的,那我们能不能不固定两个值缩减,反正值固定,每一次平方后n/2这样对数的算法效率就很快了。...} 步骤图: 最后r x base = 19683就等同我们上图余出来一个单个m值需要与结果值进行平方 这种方式的时间复杂度为O(logn),相对时间复杂度更低。

    86140

    算法素颜(第3篇):KO!大O——时间复杂度

    算法》中提到了:计算复杂度分为时间复杂度与空间复杂度。本篇文章来讲讲时间复杂度。 如何度量时间复杂度 时间复杂度由所消耗的时间决定。所消耗的时间由硬件与软件共同决定。...即:同等输入规模下,第一种算法的时间开销是第二种算法时间开销的2倍。 这种复杂度关系总是常数倍的,即使n取无穷大也是。用数学语言表示就是: ?...O()定义: (i) 如果算法T1与算法T2的复杂度在同一量级,那么O(T1) = O(T2) (ii) 如果算法T1比算法T2的复杂度量级高,那么O(T1) > O(T2) (iii) 如果算法T1比算法...根据上述O()的定义:O(T1) = O(T2) 这里其实蕴含了一个非常实用的结论: 推论3.5: 算法复杂度的大O表示可以简化为该算法最高阶部分的复杂度的大O表示。...大部分的算法或者复杂度理论的书籍,在介绍大O时,要么过于数学形式化,要么过于感性非严格化。 本篇文章旨在用最少的数学知识、启发式行文方式、全新的原创视角,为读者构建一个清晰、严格的时间复杂度概念。

    84130

    时间复杂度中的log(n)底数到底是多少?

    其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度...比值为log2 N / log3 N,运用换底公式后得:(lnN/ln2) / (lnN/ln3) = ln3 / ln2,ln为自然对数,显然这三个常数,与变量N无关。...用文字表述:算法时间复杂度为log(n)时,不同底数对应的时间复杂度的倍数关系为常数,不会随着底数的不同而不同,因此可以将不同底数的对数函数所代表的时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。...排序算法中有一个叫做“归并排序”或者“合并排序”的算法,它用到的就是分而治之的思想,而它的时间复杂度就是N*logN,此算法采用的是二分法,所以可以认为对应的对数函数底数为2,也有可能是三分法,底数为3...说明:为了便于说明,本文时间复杂度一概省略 O 符号。

    2.9K50

    将判断 NSArray 数组是否包含指定元素的时间复杂度从 O(n) 降为 O(1)

    前言 NSArray 获取指定 元素 的位置 或者 判断是否存在指定的 元素 的时间复杂度是 O(n)(包含特定元素时,平均耗时是 O(n/2),如果不包含特定元素,耗时是 O(n))。...当我们需要频繁进行该操作时,可能会存在较大的性能问题。 该问题背后的原因很简单。官方文档明确指出 NSArray 从第 0 位开始依次判断是否相等,所以判断次数是 n (n 等于数组长度) ?...image 本文会介绍一个特别的方案,通过将数组转为字典,我们可以将时间复杂度降低到 O(1) 级别。...: 字典的 键 是数组存储的 元素 该设计方式可以保证后续通过 objectForKey: 判断是否存在指定的 元素 字典的 值 是 数组的 索引值 该规则保证字典可以恢复为数组 // 将数组转为字典...image 通过测试日志,我们可以发现该方案可以成功将时间复杂度降低到 O(1) 级别

    1.8K20

    EPnP:一种复杂度为O(N)的求解PnP问题的方法

    但利用更多的对应点,可以求的更加精准,为此出现了很多方法,但这些方法的计算复杂度都很高,复杂度随着匹配点个数N的增加往往呈指数上涨,达到 ? ,甚至有的达到了 ? 。...我们可以发现,式中只有控制点在相机坐标系中的坐标为未知量,另 ? ,对应的系数写成一个矩阵M,则有方程:Mx=0,其中M的维度是2Nx12,N是所有3D点,也是所有相机拍摄的2D点的个数。...文章提到,这种方法复杂度最高的一步是根据M矩阵计算 ? ,这一步的复杂度是随着N(3D点数)的增加而线性增加的,所以算法的复杂度是 ? ; 2....个人认为,将众多3D点计算出有限的控制点,充分利用了全部信息并降低了数据维度,是EPnP算法的精妙之处。 ? (图:论文中的实验结果) 备注:本文作者为我们「3D视觉从入门到精通」星球特邀嘉宾。...EPnP: An Accurate O(n) Solution to the PnP Problem. 2.

    3.2K10

    算法-1到n中所有和为m的组合

    题目: 输入两个整数 n 和 m,从数列1,2,3…….n 中随意取几个数,使其和等于 m ,要求将其中所有的可能组合列出来。...解题思路: 好未来笔试题中的一道题目,是背包问题的一个衍生问题,设i是1,2,3…….n 中的一个数,那么从i=1开始,(n,m,i)的问题就可以变成(n,m-i,i+1)的子问题,依次递归下去,这样会有两个结果...举个例子,假设n=3,m=4,i的初始值为1,组合结果为v: 调用函数:(3,4,1) v[1] 第一层递归:(3,3,2) v...) m=0 找到满足条件的一组数 退回到第一层,且i>m 退回到第一层 第一层递归:(3,3,4) v[1,4] i>m 退回到第0层...直到在第0层的时候,i>n,即 v[3]的情况,所有的递归就都结束了。

    1.9K50

    (面试)场景方案:如何设计O(1)时间复杂度的抽奖算法?

    对于不同概率的抽奖配置,我们也有为它设计出不同的抽奖算法策略。让万分位以下的这类频繁配置的,走O(1)时间复杂度。...如;O(n)、O(logn) 如图; 算法1;是O(1) 时间复杂度算法,在抽奖活动开启时,将奖品概率预热到本地(Guava)/Redis。如,10%的概率,可以是占了1~10的数字区间,对应奖品A。...算法2;是O(n) ~ O(logn)算法,当奖品概率非常大的时候,达到几十万以上,我们就适合在本地或者 Redis 来初始化这些数据存到 Map 里了。...O(1)、O(logn) 时间复杂度的算法,装配和抽奖的实现都是不同的。...3、4、2、9,存储为 [1~3]、[4~7]、[8~9]、[10~18],抽奖时,for循环匹配。

    17610

    【论文阅读笔记】Myers的O(ND)时间复杂度的高效的diff算法

    之前学的基于DP的算法的时间复杂度是O(MN),也就是我们所说的N平方复杂度。对于大量的数据而言,之前的算法速度是很慢的。 编辑图 因此,Myers在论文中引入了编辑图(Edit Graph)的概念。...而且,狄克斯特拉算法哪怕经过了优先级队列的优化,时间复杂度达到了O(ElogE),但是这个仍然比Myers的算法的时间复杂度高。...这也为我们后面的计算提供了依据。 关于上面两项引理的证明,有兴趣的读者可以查阅论文原文的第五页,即可看到证明。 算法思路 Myers的diff算法是贪心的、使用了动态规划的思想的。...我们既然要得到到达点(M,N)的最短路径,设到达点(M,N)的路径长度为D,那就是要先得到众多(D-1)-path,然后从这些备选路径的结束点为起点,计算出到达点(M,N)最直观最短的一条路径,这就是我们要连上去的路径...因此,我们只需要从0-path开始,迭代的计算1-path,2-path,3-path,…,D-path。这样,我们求到的第一条能到达点(M,N)的路径,就是答案了。也就是我们的编辑路径。

    80930

    算法之路(二)呈现O(logN)型的三个算法典型时间复杂度

    典型时间复杂度 我们知道算法的执行效率,可以从它的时间复杂度来推算出一二。而典型的时间复杂度有哪些类型呢? ?...典型的时间复杂度.png 由上图,可以看出,除了常数时间复杂度外,logN型的算法效率是最高的。今天就介绍三种非常easy的logN型算法。 对分查找 给定一个整数X和整数A0,A1,......假设2的f次方等于N-1,最大时间即为log(N-1) + 2。因此对分查找的时间复杂度为logN。...算法假设m>=n,但是如果m n,则在第一次while循环后,m和n 会互相交换。 该算法的整个运行时间依赖于确定余数序列的长度,也就是while循环的次数。...如果N> M/2,则此时M中有个N,从而余数M-N M/2。 幂运算 最后一个算法,是计算一个整数的幂。我们可以用乘法的次数作为运行时间的度量。 计算X的N次方常见的算法是使用N-1次乘法自乘。

    68840
    领券