首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

面向纯新手的TensorFlow.js速成课程

本课程由CodingTheSmartWay.com出品,在本系列的第一部分中,你将学到: TensorFlow.js是什么 如何将TensorFlow.js添加到Web应用程序中 如何使用TensorFlow.js...向Web应用程序添加机器学习功能 什么是TensorFlow.js TensorFlow.js是一个JavaScript库,它可以将机器学习功能添加到任何Web应用程序中。...; 当我们将TensorFlow.js导入为tf后,我们现在可以通过在代码中使用tf对象来访问TensorFlow.js API 。...该方法以张量的形式接收输入值作为参数。在这个特定情况下,我们在内部创建一个只有一个值(5)的张量并将其传递给预测。通过调用print函数,我们确保将结果值打印到控制台,如下所示: ?...总结 在本系列的第一集中,你学到了Tensorflow.js的基础知识,通过使用该库,我们实现了基于线性回归的第一个简单的机器学习示例。现在你应该对主要的Tensorflow.js构建块有基本的了解。

7.4K50

TensorFlow.js简介

我们可以使用input.shape来检索张量的大小。 const tensor_s = tf.tensor([2,2]).shape; 这里的形状为[2]。我们还可以创建具有特定大小的张量。...我们将举一个简单的例子:f(x)=x⁶+2x⁴+3x²+x+1。函数的曲线图如下所示。可以看到函数的最小值在区间[-0.5,0]。我们将使用优化器来找出确切的值。 ?...现在我们可以将此conv层添加到模型中: model.add(convlayer); Tensorflow.js有什么好处?我们不需要指定下一层的输入大小,因为在编译模型后它将自动评估。...有不同的方法可以做到这一点,比如SGD和Adam优化器。...这就像运行另一个线程,主线程在等待拟合函数执行完成。 One Hot编码 通常给定的标签是代表类的数字。例如,假设我们有两个类:一个橙色类和一个苹果类。然后我们会给橙色的类标签0和苹果的类标签1。

1.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用TensorFlow.js进行人体姿态估计:在浏览器中即可实时查看人体姿态

    PoseNet入门 PoseNet可以被用来估计任何一个单个姿态或多个姿态,这意味着它分为检测只有一个人的图像/视频和检测有多个人的图像/视频两个版本。为什么有两个版本?...PoseNet目前检测到下图所示的17个关键点: 第1部分:导入TENSORFLOW.JS和POSENET库 很多工作都是将模型的复杂性抽象化并将功能封装为易于使用的方法。...它应该增加/减少,以滤除不太准确的姿势,但只有在调整姿势置信度分数不够好时。 查看这些参数有什么影响的最好方法是使用多姿态估计演示。 让我们回顾一下输出结果: 希望以序列姿势解决。...方便地,PoseNet模型是图像大小不变的,这意味着它可以以与原始图像相同的比例预测姿势位置,而不管图像是否缩小。...第三维(17)中的每个切片对应于特定关键点的热图。该热图中的每个位置都有一个置信度分数,这是该关键点类型的一部分存在于该位置的概率。

    5.3K40

    为什么要用 PyTorch、TensorFlow 框架

    Tensor(张量)是一种物理学和工程学中广泛使用的数学结构。2阶的Tensor是一种特殊的矩阵;而对向量和张量取内积就可以得到另一个拥有新长度和新方向的向量。...TensorFlow 2.0有四个主要部分组成: TensorFlow核心,一个用于开发和培训机器学习模型的开源库; TensorFlow.js,一个在Web浏览器和Node.js上训练和部署模型的JavaScript...在TensorFlow.js、ml5.js之上还有一个高级库,它隐藏了张量和优化器的复杂性。 TensorFlow.js可以通过浏览器支持移动设备和桌面设备。...在拥有GPU的计算机上,TensorFlow.js可以非常快速地在浏览器中运行。 TensorFlow Lite是一个用于移动设备的开源深度学习框架。...在很多情况下,选用哪种框架无关紧要:你会发现每个框架可用的模型基本相同。在某些特定的情况下,可能某个框架优于另一个——至少在当前版本是如此。

    1.1K21

    掌握深度学习,为什么要用PyTorch、TensorFlow框架?

    Tensor(张量)是一种物理学和工程学中广泛使用的数学结构。2 阶的 Tensor 是一种特殊的矩阵;而对向量和张量取内积就可以得到另一个拥有新长度和新方向的向量。...TensorFlow 2.0 有四个主要部分组成: TensorFlow 核心,一个用于开发和培训机器学习模型的开源库; TensorFlow.js,一个在 Web 浏览器和 Node.js 上训练和部署模型的...在 TensorFlow.js、ml5.js 之上还有一个高级库,它隐藏了张量和优化器的复杂性。 TensorFlow.js 可以通过浏览器支持移动设备和桌面设备。...在拥有 GPU 的计算机上,TensorFlow.js 可以非常快速地在浏览器中运行。 TensorFlow Lite 是一个用于移动设备的开源深度学习框架。...在很多情况下,选用哪种框架无关紧要:你会发现每个框架可用的模型基本相同。在某些特定的情况下,可能某个框架优于另一个——至少在当前版本是如此。

    1.5K10

    基于TensorFlow.js在浏览器上构建深度学习应用

    这只需要矩阵乘法就可以计算,在TensorFlow.js中只用单个张量操作。因为训练一个KNN分类器比训练神经网络模型要快得多(你需要做的只是将训练样本增加到矩阵)。...如果你计划在应用中使用这些框架,你也可以很容易在TensorFlow.js代码中使用这些外部框架。...这时我们调用图片的3D张量对象的dispose()方法,它会释放指定部分张量的GPU的内存。如果不这么操作,随着迭代训练每次迭代都会持续地分配图片张量对象,我们会出现内存泄漏 。...下面总结一下,TensorFlow.js 的迭代训练过程如下: 从摄像头抓取一张图片,并使用tf.fromPixels 函数将其转换成一个3D张量 检查我们当前是否在处理某个手势。...因为我们讨论了,从webcam图片使用TensorFlow.js进行快速地训练一个模型的必要部分,你可以很容易的将本项目中的代码用在自己的应用中。

    1.2K40

    PyTorch的Broadcasting 和 Element-Wise 操作 | PyTorch系列(八)

    如果两个元素在张量内占据相同位置,则称这两个元素是对应的。该位置由用于定位每个元素的索引确定。...我们知道,如果两个元素在张量内占据相同位置,则认为这两个元素是对应的,并且该位置由用于定位每个元素的索引确定。让我们看一个对应元素的例子。 > t1[0][0] tensor(1....这让我们看到张量之间的加法是一个element-wise 操作。在相应位置的每一对元素被加在一起,产生一个新的相同形状的张量。...我们有两种方法可以做到这一点: (1) 使用这些符号运算: > print(t + 2) tensor([[3., 4.], [5., 6....这里有一个实际的例子,并讨论了确定一个特定的张量如何广播的算法,所以检查一下,对广播进行更深入的讨论。 不要担心不知道TensorFlow.js。这不是必须的,我强烈推荐广播的内容。

    6.5K61

    在浏览器中使用TensorFlow.js和Python构建机器学习模型(附代码)

    浏览器中的机器学习 TensorFlow.js提供了两种方法来训练模型(非常类似于TensorFlow): 第一种方法是使用Core API使用低级张量操作来定义模型。...让我们举一个在浏览器中使用张量的例子。...例如,这可以帮助我们确定某人的肘部在图像中出现的位置。 只是要清楚-姿势估计不是关于识别谁在一个图像中。该算法只是简单地估计关键身体关节的位置。...ml5.js是一个基于TensorFlow.js和p5.js的库。p5.js是另一个库可以使你更容易在浏览器中访问网络摄像头。...我们用PoseNet做的项目可以更进一步,通过训练另一个分类器来构建一个姿态识别应用程序。我鼓励你去尝试一下!

    2.2K00

    教程 | TF官方博客:基于TensorFlow.js框架的浏览器实时姿态估计

    PoseNet 了解一下 PoseNet 可用于估计单个姿态或多个姿态,这意味着有两种算法,一种仅能检测图像/视频中的一个人,而另一种可以检测图像/视频中的多个人。为什么要有两个版本?...每个关键点包含其位置和置信度得分。同样,所有关键点位置在输入图像空间中都有 xy 坐标,并且可以直接映射到图像上。...方便的一点是,PoseNet 模型要求图像尺寸不变,这意味着它可以预测与原始图像相同比例的姿态位置,而不管图像是否被缩小。...下图展示了在较高层次,每个姿态关键点与热图张量和偏移向量张量的关联。 ? PoseNet 返回的 17 个姿态关键点中每一个都与用于确定关键点确切位置的热图张量和偏移向量张量相关联。...(17 个中)第三维的每个切片图对应特定关键点的热图。热图中每个位置具有置信度得分,即该关键点类型的一部分存在于该位置中的概率。

    1.2K60

    独家 | 在浏览器中使用TensorFlow.js和Python构建机器学习模型(附代码)

    然后,我们将深入讨论使用TensorFlow.js在浏览器中构建我们自己的机器学习模型。然后我们将构建一个应用程序,来使用计算机的网络摄像头检测你的身体姿势!...让我们举一个在浏览器中使用张量的例子。...例如,这可以帮助我们确定某人的肘部在图像中出现的位置。 只是要清楚-姿势估计不是关于识别谁在一个图像中。该算法只是简单地估计关键身体关节的位置。...ml5.js是一个基于TensorFlow.js和p5.js的库。p5.js是另一个库可以使你更容易在浏览器中访问网络摄像头。...我们用PoseNet做的项目可以更进一步,通过训练另一个分类器来构建一个姿态识别应用程序。我鼓励你去尝试一下!

    1.6K20

    机器学习教程:使用摄像头在浏览器上玩真人快打

    这样,它就能够检测用户身体的位置。作为下一步,算法在黑色画布上呈现用户的身体为白色。之后,它构建了一个垂直和水平直方图,将每个像素的值相加。基于计算结果,算法检测当前用户姿势是什么。...我们将开发一种有监督的深度学习模型,模型使用来自用户的笔记本电脑相机的图像,检测用户是否进行了出拳和踢腿。 在文章的最后,我们可以建立一个模型来玩真人快打: ?...请注意,在“Others”目录中,我们可能会有更多的图像,因为出拳和踢腿的照片比走路、转身的照片要少。如果我们一个类有太多图像并且我们在所有类上训练模型,那么我们就有可能使它偏向于这个特定的类。...下一步,我们将缩放的帧传递给MobileNet,我们从所需的隐藏层得到输出并将其作为输入传递给我们的模型的predict方法。我们模型的predict方法返回一个具有单个元素的张量。...一个有n个元素的向量,有n – 1个元素是0,有一个元素是0,我们称为独热向量。 然后,我们通过从MobileNet上叠加每个图像的输出来形成输入张量xs。

    1.7K40

    【一统江湖的大前端(9)】TensorFlow.js 开箱即用的深度学习工具

    Tensor数据类型可以很方便地构造各种维度的张量,支持切片、变形、合并分割等结构操作,同时也定义了各类线性代数运算的操作符,这样做的好处是可以将开发者在应用层编写的程序和不同平台的底层实现之间解耦。...Define阶段是使用TensorFlow.js的第一步,这个阶段中需要初始化神经网络模型,你可以在TensorFlow的tf.layers对象上找到具备各种功能和特征的隐藏层,通过模型实例的add方法将其逐层添加到神经网络中...Fit阶段执行的是模型训练的工作(fit本身是拟合的意思),通过调用模型的fit方法就可以启动训练循环,官方示例代码如下(fit方法接收的参数分别为输入张量集、输出张量集和配置参数): const batchSize...每将一个不同的过滤器应用于输入图像后,卷积层就会增加一个输出,真实的深度网络中可能会使用多个过滤器,所以在卷积神经网络的原理图中通常会看到卷积层有多个层叠的图像。...,它输出的每个单元可以被认为概括了前一层中一个区域的特征,常用的最大池化层就是在区域内选取一个最大值来作为整个区域在池化层的映射(这并不是唯一的池化计算方法),假设前文示例中的66的卷积层输出后紧接着一个使用

    1.1K20

    TensorFlow发布面向JavaScript开发者的机器学习框架TensorFlow.js

    在 TensorFlow.js 中,我们可以使用最底层的 JavaScript 线性代数库或最高级的 API 在浏览器上开发模型,也能基于浏览器运行已训练的模型。...这些新颖的模型作为案例在 TensorFlow.js 中都提供了实现代码,读者也可以跟随教程实现基于浏览器的模型。...Tensor TensorFlow.js 中的中心数据单元是张量(tensor):一维或多维数组。一个 Tensor 实例的 shape 属性定义了其数组形状(即,数组的每个维度上有多少个值)。...你可以用 assign 方法分配一个新的张量到一个已有的变量(variable): Variable 主要用于在模型训练过程中保存和更新值。...在 Tensorflow.js 有两种创建模型的方式:直接使用 Op 表示模型的运算。或者使用高级 API tf.model 来构建以层定义的模型,这在深度学习中是很常用的抽象形式。

    948120

    TensorFlow.js、迁移学习与AI产品创新之道

    TensorFLow.js 有 2 种创建模型的方法。...第四个介绍如何将 Keras 或 TensorFlow 训练好的模型导入 TensorFlow.js 来使用。有兴趣可以详细学习下。...可调用的 model 后,我们需要把 model 放置在一个服务器上,并设置允许跨域请求,这边可以使用一个 nodejs 的库: npm install http-server -g 进入model文件夹内运行...主要是训练数据收集:摄像头拍摄,每张图片归一化处理成 shape 为 [1,244,244,3] 的张量,作为训练数据;为此 tensorFlow.js 特地封装了调用 webcam 的相关方法,以方便直接对接到...尝试选择另一个图层,看看它是如何影响模型质量的!可以使用 model.layers 打印模型的图层查看。

    2.4K100

    前端入门机器学习 Tensorflow.js 简明教程

    Define 阶段是使用TensorFlow.js的第一步,这个阶段中需要初始化神经网络模型,你可以在TensorFlow的tf.layers对象上找到具备各种功能和特征的隐藏层,通过模型实例的add方法将其逐层添加到神经网络中...Fit 阶段执行的是模型训练的工作(fit本身是拟合的意思),通过调用模型的fit方法就可以启动训练循环,官方示例代码如下(fit方法接收的参数分别为输入张量集、输出张量集和配置参数): const batchSize...每将一个不同的过滤器应用于输入图像后,卷积层就会增加一个输出,真实的深度网络中可能会使用多个过滤器,所以在卷积神经网络的原理图中通常会看到卷积层有多个层叠的图像。...,它输出的每个单元可以被认为概括了前一层中一个区域的特征,常用的最大池化层就是在区域内选取一个最大值来作为整个区域在池化层的映射(这并不是唯一的池化计算方法),假设前文示例中的66的卷积层输出后紧接着一个使用...model.fit方法进行模型的训练,这里将训练集和验证集都放入训练过程。验证集的目的是为了验证模型训练效果是否偏离了轨道,也就是是否出现过拟合或者欠拟合的情况。

    4.2K43

    谷歌发布人体图像分割工具BodyPix 2.0,支持多人识别,可在iPhone上流畅运行

    在使用默认设置的情况下,BodyPix可以在15寸MacBook Pro上以25 fps的速度估计,并渲染人和身体部位的分割。而在iPhone X上,BodyPix能以21 fps的速度进行估计。...因此如果您需要对不同的人进行区分,请使用segmentMultiPerson,不过引入此方法会导致运行速度变慢。 以上结果返回的是一组0和1的数组,用于表示该像素点是否属于人。...为了估计身体部位的分割,BodyPix使用相同的MobileNet表示,但是这次通过预测额外的24个通道输出张量P来重复上述过程,其中二十四是身体部位的数量。每个通道编码身体某部位是否存在的概率。...输出张量P中有24个通道,因此需要在24个通道中找到最佳部分。在推断期间,对于输出身体部位张量P的每个像素位置(u,v),body_part_id使用以下公式选择属于第i个部位概率最高的像素: ?...这将产生一个二维图像,每个像素都包含一个整数,该整数表示该像素属于哪个身体部位。通过将值设置为-1,可以把不属于人体的部分剔除掉。 ?

    65610

    教程 | 用摄像头和Tensorflow.js在浏览器上实现目标检测

    最后,YOLOv2 有一个暂时不被原生 Tensorflow.js 支持的重组层(reorg layer)。下一步,我们将重点放在 Tiny YOLO 的网络配置(神经网络结构)以及权重上。...相反,我会专注于我在将 Python 版本转换到 Javascript 时遇到的难题。 1. 一部分张量操作不可行。...你不能像 Python 那样使用 -1 索引 在 python 中,你可以使用 -1 作为「最后一个元素」。...这也是 Tensorflow.js 最棒的部分之一。 我们可以从文件(DOM)中取出视频或者图像然后将其转换为一个张量!...现在可以将图像作为张量输入!之后,从图像切换到网络摄像头,你只需将其指向正确的元素即可。这对我来说很神奇。 在这之后,我们要做一些预处理。

    2.3K41

    TensorFlow.js、迁移学习与AI产品创新之道

    TensorFLow.js 有 2 种创建模型的方法。...第四个介绍如何将 Keras 或 TensorFlow 训练好的模型导入 TensorFlow.js 来使用。有兴趣可以详细学习下。 3 webcam-transfer-learning ?...可调用的 model 后,我们需要把 model 放置在一个服务器上,并设置允许跨域请求,这边可以使用一个 nodejs 的库: npm install http-server -g 进入model文件夹内运行...主要是训练数据收集:摄像头拍摄,每张图片归一化处理成 shape 为 [1,244,244,3] 的张量,作为训练数据;为此 tensorFlow.js 特地封装了调用 webcam 的相关方法,以方便直接对接到...尝试选择另一个图层,看看它是如何影响模型质量的!可以使用 model.layers 打印模型的图层查看。

    1.2K40

    谷歌发布人体图像分割工具BodyPix 2.0,支持多人识别,可在iPhone上流畅运行

    在使用默认设置的情况下,BodyPix可以在15寸MacBook Pro上以25 fps的速度估计,并渲染人和身体部位的分割。而在iPhone X上,BodyPix能以21 fps的速度进行估计。...因此如果您需要对不同的人进行区分,请使用segmentMultiPerson,不过引入此方法会导致运行速度变慢。 以上结果返回的是一组0和1的数组,用于表示该像素点是否属于人。...为了估计身体部位的分割,BodyPix使用相同的MobileNet表示,但是这次通过预测额外的24个通道输出张量P来重复上述过程,其中二十四是身体部位的数量。每个通道编码身体某部位是否存在的概率。...输出张量P中有24个通道,因此需要在24个通道中找到最佳部分。在推断期间,对于输出身体部位张量P的每个像素位置(u,v),body_part_id使用以下公式选择属于第i个部位概率最高的像素: ?...这将产生一个二维图像,每个像素都包含一个整数,该整数表示该像素属于哪个身体部位。通过将值设置为-1,可以把不属于人体的部分剔除掉。 ?

    1.3K10
    领券