首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在表格数据上,为什么基于树的模型仍然优于深度学习?

    机器之心报道 机器之心编辑部 为什么基于树的机器学习方法,如 XGBoost 和随机森林在表格数据上优于深度学习?本文给出了这种现象背后的原因,他们选取了 45 个开放数据集,并定义了一个新基准,对基于树的模型和深度模型进行比较,总结出三点原因来解释这种现象。 深度学习在图像、语言甚至音频等领域取得了巨大的进步。然而,在处理表格数据上,深度学习却表现一般。由于表格数据具有特征不均匀、样本量小、极值较大等特点,因此很难找到相应的不变量。 基于树的模型不可微,不能与深度学习模块联合训练,因此创建特定于表格的深

    02
    领券