一、引言 在机器学习问题中,很多的算法归根到底就是在求解一个优化问题,然而我们的现实生活中也存在着很多的优化问题,例如道路上最优路径的选择,商品买卖中的最大利润的获取这些都是最优化的典型例子,前
在机器学习问题中,很多的算法归根到底就是在求解一个优化问题,然而我们的现实生活中也存在着很多的优化问题,例如道路上最优路径的选择,商品买卖中的最大利润的获取这些都是最优化的典型例子,前面也陆续地有一些具体的最优化的算法,如基本的梯度下降法,牛顿法以及启发式的优化算法(PSO,ABC等)。
支持向量机(SVM)是一种有监督的分类算法,并且它绝大部分处理的也是二分类问题,先通过一系列图片了解几个关于SVM的概念。
序列最小最优化算法(Sequential minimal optimization)
SVM在之前的很长一段时间内是性能最好的分类器,它有严密而优美的数学基础作为支撑。在各种机器学习算法中,它是最不易理解的算法之一,要真正掌握它的原理有一定的难度。在本文中,SIGAI将带领大家通过一张图来理清SVM推导过程的核心过程。
最优化问题:问题给出某些约束条件,满足这些约束条件的解称为可行解;为了衡量可行解的好坏,问题还给出了目标函数,使目标函数取最大(小)值的可行解称为最优解。 贪心法是求解最优化问题的一种设计策略。贪心法通过分步决策来求解问题。在对问题求解时,总是做出在当前这一步看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。 贪心法在每一步上用作决策依据的选择准则被称为最优量度标准或贪心准则,这种量度标准通常只考虑局部最优性。 贪心法基本要素: 最优度量标准:所谓贪心法的最优度量标准
其实想一下从上学到毕业,学了那么多有多少是真实用到的呢?但是这些事潜移默化影响你的东西,其实我们学习的并不是真实的会这些知识(并且有很多知识现在过时),而是我们学习的是一种快速学习一门知识的能力,要的就是这个快字;怎么一个快字了得,对不光快还要稳;直到今天才真正了解一些教育的含义,并不是死记硬背,而是举一反三,并不是拿来主义,而是针对特定问题特定场景特定解决;并不是随波逐流,而是扬起自己的帆远航;并不是svm,而是一种境界;
在约束最优化问题中,常常会利用到拉格朗日对偶性求解。在常用的机器学习算法中,支持向量机和最大熵模型都使用到该方法求最优解。因为后面将要讲到这两个算法,所以先介绍这种方法作为知识的铺垫。
前言:“熵”最初是热力学中的一个概念,后来在信息论中引入了信息熵的概念,用来表示不确定度的度量,不确定度越大,熵值越大。极限情况,当一个随机变量均匀分布时,熵值最大;完全确定时,熵值为0。以最大熵理论为基础的统计建模已经成为近年来自然语言处理领域最成功的机器学习方法。
等号两边都有x,需要进一步分情况讨论,推导过程见https://www.cnblogs.com/wlzy/p/7966525.html
本文原载于微信公众号:磐创AI(ID:xunixs),AI研习社经授权转载。欢迎关注磐创AI微信公众号及AI研习社博客专栏。
支持向量机是机器学习中最不易理解的算法之一,它对数学有较高的要求。之前SIGAI微信公众号已经发过“用一张图理解SVM脉络”,“理解SVM的核函数和参数”这两篇文章,今天重启此话题,对SVM的推导做一个清晰而透彻的介绍,帮助大家真正理解SVM,掌握其精髓。市面上有不少讲解支持向量机的文章和书籍,但真正结构清晰、触达精髓的讲解非常少见。
支持向量机是机器学习中最不易理解的算法之一,它对数学有较高的要求。今天,对SVM的推导做一个清晰而透彻的介绍,帮助大家真正理解SVM,掌握其精髓。市面上有不少讲解支持向量机的文章和书籍,但真正结构清晰、触达精髓的讲解非常少见。
自从大半年前接触到SVM以来,感觉一直没怎么把SVM整明白。直到最近上的《模式识别》课程才仿佛打通了我的任督二脉,使我终于搞清楚了SVM的来龙去脉,所以写个博客作个总结。
定义:若干冲突或相互影响条件约束下在给定区域内寻找尽可能的最优解(非劣解)。 关键词:条件约束,折中最优解(解并非唯一是与单目标优化问题的本质区别) 文字描述: D个决策变量参数; N个目标函数; m+n个约束条件。 数学描述:
在支持向量机和最大熵模型中都会用到拉格朗日对偶性,主要为解决约束最优化问题,通过将原始问题转换为对偶问题求解。为方便理解,遂记录下简单的概念的结论,有理解不当的地方望多提意见~
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节从SVM算法的基本思想推导成最终的最优化数学表达式,将机器学习的思想转换为数学上能够求解的最优化问题。SVM算法是一个有限定条件的最优化问题。
动态规划法:与贪心法类似,动态规划法也是一种求解最优化问题的算法设计策略。它也采取分布决策的方法。但与贪心法不同的是,动态规划法每一步决策依赖子问题的解。直观上,为了在某一步做出决策,需要先求若干子问题,这就使得动态规划法是自底向上的。 按照多部决策方法,一个问题的活动过程可以分成若干阶段,每个阶段可能包含一个或多个状态。多部决策求解方法就是从初始状态开始做出每个阶段的决策,形成一个决策序列,该决策序列也成为策略。对于每一个决策序列,可以用一个数值函数(目标函数)衡量该策略的优劣。问题求解的目标是获取最优决
优化问题一般可分为两大类:无约束优化问题和约束优化问题,约束优化问题又可分为含等式约束优化问题和含不等式约束优化问题。
简单点讲,SVM 就是一种二类分类模型,他的基本模型是的定义在特征空间上的间隔最大的线性分类器,SVM 的学习策略就是间隔最大化。
决策树算法 根据数据属性,采用树状结构建立决策模型。常用来解决分类和回归问题。 常见算法:CART(Classification And Regression Tree),ID3,C4.5,随机森林等 回归算法 对连续值预测,如逻辑回归LR等 分类算法 对离散值预测,事前已经知道分类,如k-近邻算法 聚类算法 对离散值预测,事前对分类未知,如k-means算法 神经网络 模拟生物神经网络,可以用来解决分类和回归问题 感知器神经网络(Perceptron Neural Network) ,反向传递(Back Propagation)和深度学习(DL) 集成算法 集成几种学习模型进行学习,将最终预测结果进行汇总 Boosting、Bagging、AdaBoost、随机森林 (Random Forest) 等
Python版本: Python3.x 运行平台: Windows IDE: Sublime text3 一、前言 说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。 本文出现的所有代码,均可在我的github上下载,欢迎Follow、Star:https://githu
显示约束和解空间:规定每个分量xi取值的约束条件称为显式约束。对给定的一个问题,显示约束规定了所有可能的元组,他们组成问题的候选解集,被称为该问题实例的解空间。 隐式约束和判定函数:隐式约束给出了判定一个候选解是否为可行解的条件。一般需要从问题描述的隐式约束出发,设计一个判定函数,程序根据判定函数判断一个解是否为可行解。 最优解和目标函数:目标函数,也称代价函数,用来衡量每个可行解的优劣。使目标函数取得最大(小)值的可行解为问题的最优解。 剪枝函数:为了提高搜索效率,在搜索过程中使用约束函数,可以避免无谓地
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/78072313
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,小编将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
1、 机器学习的目的:现代人都讲究资源整合,学习应用也是一样,需要将工作中所接触和学习到的技能整合起来形成自己的核心竞争力力,提高自己的不可替代性,而机器学习恰好是当前最热门也最有用的结合之一。
统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后需要考虑用什么样的计算方法来求解最优模型。
动态规划方法通常用来求解最优化问题。 适合使用动态规划求解最优化问题应具备的两个要素: 1、最优子结构:如果一个问题的最优解包含子问题的最优解,那么该问题就具有最优子结构。 2、子问题重叠(如果子问题不重叠就可以用递归的方法解决了) 具备上述两个要素的问题之所以用动态规划而不用分治算法是因为分治算法会反复的调用重叠的子问题导致,效率低下,而动态规划使用了运用了空间置换时间的思想,将每一个已解决的子问题保存起来,这样重复的子问题只需要计算1次,所以时间效率较高。 动态规划算法设计步骤: 1.刻画一个最优解的结
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。
贪心法用于求解最优化问题,即求解某一问题的最优解。 既然能用贪心法求解的问题是一个最优化问题,那么我们首先来了解下最优化问题的几个基本概念。 最优化问题的几个基本概念 目标函数 解决一个最优化问题,首先要将问题抽象成一个数学函数,这也就是一个数学建模的过程,这个能够描述问题的函数就称为『目标函数』,这个函数的最大/小值就是我们要求的最优值。 约束条件 任何函数都有它的取值范围,所有取值范围的集合就称为『约束条件』。 可行解 满足所有约束条件的解称为『可行解』。 最优解 满足约束条件,并
前言:在svm模型中,要用到拉格朗日乘子法,对偶条件和KKT条件,偶然看到相关的专业解释,忍不住想总结收藏起来,很透彻,醍醐灌顶。
【磐创AI导读】:本文主要介绍SVM多核学习方法。想要学习更多的机器学习知识,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
如果你是一名模式识别专业的研究生,又或者你是机器学习爱好者,SVM是一个你避不开的问题。如果你只是有一堆数据需要SVM帮你处理一下,那么无论是Matlab的SVM工具箱,LIBSVM还是python框架下的SciKit Learn都可以提供方便快捷的解决方案。
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/111
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。
机器学习中,首先要考虑学习什么样的模型,在监督学习中,如模型y=kx+b就是所要学习的内容。
摘要:在2023年7月即将召开的机器学习领域知名国际会议ICML2023中,清华大学计算机系徐华老师团队以长文的形式发表了采用低维优化求解器求解高维/大规模优化问题的最新研究成果(论文标题“GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming”)。本项研究针对工业界对于大规模整数规划问题的高效求解需求,提出了基于图卷积神经网络和梯度提升决策树的三阶段优化求解框架,探索了仅使用小规模、免费、开源的优化求解器求解只有商用优化求解器才能解决的大规模优化问题的道路,在电力系统、物流配送、路径规划等诸多应用领域中均具有潜在的应用价值。
MATLAB非线性优化fmincon_数学_自然科学_专业资料。精心整理 act…
本系列是《玩转机器学习教程》一个整理的视频笔记。前面两个小节具体介绍了Hard Margin SVM算法的思想,并将这种思想转换为数学中的最优化问题。这一小节:
1 \geq \rho \geq 0 为比例系数, 调整 L_{1} 正则化与 L_{2} 正则化的比例。
[P1216 USACO1.5][IOI1994]数字三角形 Number Triangles - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
粒子群算法的发展过程。粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性.由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用. 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要有以下几种发展方向。
标签: fmincon| MATLAB非线性优化fmincon_数学_自然科学_专业资料。MATLAB非线性优化函数fmincon的详细整理 active-set and sqp algorithms 不接受用户提供的海塞矩阵……
基本思想: 根据提出的问题枚举所有可能状态,并用问题给定的条件检验哪些是需要的,哪些是不需要的,能使命题成立即为其解。
加权拟阵问题是一个组合优化问题,其中我们需要在满足某些约束条件的情况下,从给定的集合中选择一个子集,使得该子集的权重达到最大或最小。在这个问题中,我们特别关注最小权重最大独立子集的加权拟阵问题。
此前我们介绍了一个最优化分类算法 — logistic 回归。 Logistic 回归数学公式推导 本文中,我们再来介绍另一个最优化分类算法 — SVM。
“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十分强大的数学工具。”
领取专属 10元无门槛券
手把手带您无忧上云