首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法设计策略----动态规划法

    动态规划法:与贪心法类似,动态规划法也是一种求解最优化问题的算法设计策略。它也采取分布决策的方法。但与贪心法不同的是,动态规划法每一步决策依赖子问题的解。直观上,为了在某一步做出决策,需要先求若干子问题,这就使得动态规划法是自底向上的。 按照多部决策方法,一个问题的活动过程可以分成若干阶段,每个阶段可能包含一个或多个状态。多部决策求解方法就是从初始状态开始做出每个阶段的决策,形成一个决策序列,该决策序列也成为策略。对于每一个决策序列,可以用一个数值函数(目标函数)衡量该策略的优劣。问题求解的目标是获取最优决

    00

    算法设计策略----回溯法和分枝限界法

    显示约束和解空间:规定每个分量xi取值的约束条件称为显式约束。对给定的一个问题,显示约束规定了所有可能的元组,他们组成问题的候选解集,被称为该问题实例的解空间。 隐式约束和判定函数:隐式约束给出了判定一个候选解是否为可行解的条件。一般需要从问题描述的隐式约束出发,设计一个判定函数,程序根据判定函数判断一个解是否为可行解。 最优解和目标函数:目标函数,也称代价函数,用来衡量每个可行解的优劣。使目标函数取得最大(小)值的可行解为问题的最优解。 剪枝函数:为了提高搜索效率,在搜索过程中使用约束函数,可以避免无谓地

    00

    AI for Science:清华团队提出使用低维优化求解器求解高维/大规模优化问题的高效方法

    摘要:在2023年7月即将召开的机器学习领域知名国际会议ICML2023中,清华大学计算机系徐华老师团队以长文的形式发表了采用低维优化求解器求解高维/大规模优化问题的最新研究成果(论文标题“GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming”)。本项研究针对工业界对于大规模整数规划问题的高效求解需求,提出了基于图卷积神经网络和梯度提升决策树的三阶段优化求解框架,探索了仅使用小规模、免费、开源的优化求解器求解只有商用优化求解器才能解决的大规模优化问题的道路,在电力系统、物流配送、路径规划等诸多应用领域中均具有潜在的应用价值。

    03
    领券