链表排序算法总结 概述 问题描述:给定一个链表,请将这个链表升序排列。
前言 在很多问题上是没有标准解的,我们要找到最优解。 这就用到了遗传算法。 遗传算法是一种通过模拟自然进化过程来解决问题的优化算法。 它在许多领域和场景中都有广泛应用。...以下是一些常见的使用遗传算法的场景: 优化问题:遗传算法可以应用于各种优化问题,如工程设计、物流优化、路径规划、参数调优等。 它可以帮助找到最优或接近最优解,解决复杂的多目标优化问题。...机器学习:遗传算法可以用于机器学习的特征选择和参数调优。 例如,使用遗传算法来选择最佳特征组合,或者通过遗传算法搜索最佳参数配置以提高机器学习算法的性能。...约束满足问题:遗传算法可以用于解决约束满足问题,如布尔满足问题(SAT)、旅行商问题(TSP)等。 它可以搜索解空间,寻找满足所有约束条件的最优解或近似最优解。...从中选择最优的N个染色体继续繁殖,达到设置的繁殖代数后,获取适应度最高的个体。 需要注意的是 繁殖次数内不一定找到最优的解,繁殖的次数越多找到最优解的可能越高。
01 模型简介 最优子集回归是多元线性回归方程的自变量选择的一类方法。从全部自变量所有可能的自变量组合的子集回归方程中挑选最优者。...04 采用regsubsets() 筛选 library(leaps) sub.fit <- regsubsets(BSAAM ~ ., data = data)# 执行最优子集回归 best.summary...,以及每个回归方程对应的评价指标,采用which函数选取最优的回归方程。...,xlab = "numbers of Features", ylab = "adjr2",main = "adjr2 by Feature Inclusion") 究竟是哪些变量是入选的最优变量呢...可做图观察,图横坐标为自变量,纵坐标是调整R2,且最上面的变量搭建的回归方程的调整R2是最大的,同时利用coef()可以查看最优回归方程的回归系数,结合来看变量APSLAKE、OPRC和OPSLAKE是筛选出来的变量
一、粒子群算法的概念 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。...粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。...每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置...下面的动图很形象地展示了PSO算法的过程: 2、更新规则 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。...3、PSO算法的流程和伪代码 4、PSO算法举例 5、PSO算法的demo #include #include #include #include
寻找最大的K个数 从n个数中寻找最大的K个数。 01 class 两种思路: 1 保存目前找到的最大k个数,每访问一个数,就与这k个数中的最小值比较,决定是否更...
贪心算法的解题思路贪心算法的基本思想可以简单概括为以下几个步骤:制定选择策略: 在每一步中,根据某个标准选择一个元素。这个选择通常是基于当前局部最优的判断。...局部最优选择: 通过选择局部最优解,期望达到整体的最优解。每一步都贡献一部分最优解,最终形成全局最优解。不断迭代更新: 重复上述步骤,逐步构建出整个问题的解。...贪心算法的应用场景贪心算法在解决一些最优化问题时可以有很好的应用,但需要注意的是,并非所有问题都适合贪心算法。。贪心算法只能得到局部最优解,而不一定是全局最优解。...局部最优: 在每一步,选择能够和当前已选活动兼容(即不重叠)且结束时间最早的活动,以期望最终得到最大数量的互相兼容的活动。迭代: 重复贪心选择步骤,直到无法再选择更多的兼容活动为止。...无法回溯: 一旦做出选择,贪心算法就无法回溯修改。这意味着如果在后续步骤中发现之前的选择并不是最优的,贪心算法无法进行修改,可能导致次优解或者无法找到解。
简要 本篇主要记录三种求最优解的算法:动态规划(dynamic programming),贪心算法和平摊分析....动态规划算法的设计可以分为以下四个步骤: 1.描述最优解的结构 2.递归定义最优解的值 3.按自底向上的方式计算最优解的值 4.由计算出的结果构造一个最优解 能否运用动态规划方法的标志之一:一个问题的最优解包含了子问题的一个最优解....这个性质为最优子结构....适合采用动态规划的最优化问题的两个要素:最优子结构和重叠子问题 贪心算法 1.贪心算法是使所做的选择看起来都是当前最佳的,期望通过所做的局部最优选择来产生出一个全局最优解. 2.贪心算法的每一次操作都对结果产生直接影响...,而动态规划不是.贪心算法对每个子问题的解决方案做出选择,不能回退;动态规划则会根据之前的选择结果对当前进行选择,有回退功能.动态规划主要运用于二维或三维问题,而贪心一般是一维问题. 3.贪心算法要经过证明才能运用到算法中
二分法 函数详见rres,此代码使该算法运行了两次 def asdf(x): rres=8*x**3-2*x**2-7*x+3 return rres i=2 left=0 right...学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。...就在一个半小时前,我成功搞完了最优化六大代码,纯手打,无外力。开心! 这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。
导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...在这三个关键步骤中,前两个是机器学习要研究的问题,建立数学模型。第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(本文不考虑随机优化算法如模拟退火、遗传算法等): 公式求解 数值优化 前者给出一个最优化问题精确的公式解...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。 推荐阅读 pandas进阶宝典 数据挖掘实战项目 机器学习入门
贪心算法(Greedy Algorithm)是一种逐步构建解决方案的方法。在每一步选择中,贪心算法总是选择在当前看来最优的选择,希望通过这些局部最优选择最终能构建出全局最优解。...贪心算法的特点是简单高效,但它并不总能保证得到最优解。 一、贪心算法的基本概念 贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。...贪心算法的基本步骤通常包括以下几个: 选择:选择当前最优的选项。 验证:验证当前选择是否可行(通常包括是否满足约束条件)。 构建:将当前选择加入到最终的解决方案中。...贪心算法的适用场景 贪心算法通常适用于以下场景: 最小生成树:如Kruskal和Prim算法。 最短路径问题:如Dijkstra算法。 区间调度问题:如选择最多的不重叠区间。...四、总结 贪心算法是一种通过局部最优选择构建全局最优解的方法。虽然它不总能保证得到最优解,但在许多实际问题中表现良好。通过理解和应用贪心算法,我们可以有效地解决许多复杂的优化问题。
2018 06 21 模拟退火算法 模拟退火算法 ( simulated anneal , SA) 求解最优化问题常用的算法,今天应用 SA 解决一元多次函数最小值的例子解释 SA 算法。...(-ΔT/kT) 接受 S′ 作为新的当前解 如果满足终止条件则输出当前解作为最优解,结束程序,终止条件通常取为连续若干个新解都没有被接受时终止算法。...这是有意选取的一个多峰值函数,观察SA算法是否陷入局部极小;爬山算法是怎么陷入局部极小的,SA又是怎么跳出局部极小的。...T,T_max 是解空间的取值范围,i 是迭代次数,best是初始最优解,设为在 T处,break_i是控制跳出的次数,每当取到最优解则置为0. 评价函数选用min(s,s')....5 爬山算法搜索模拟 这主要得益于SA以一定概率接收不好的解,如果标注这部分,可以认为为爬山算法。再看下,爬山算法的搜索过程,陷入局部最小,搜索提前终止,所能找到的最小值为-0.5. ?
文章目录 一、唯一最优解 二、无穷多最优解 三、无界解 四、无可行解 五、线性规划迭代范围 六、线性规划求解步骤 一、唯一最优解 ---- 使用单纯形法求解线性规划时 , 得到最优解时 , 所有的非基变量对应的检验数都小于...0 , 该线性规划有唯一最优解 ; 二、无穷多最优解 ---- 使用单纯形法求解线性规划时 , 得到最优解时 , 存在一个或多个非基变量对应的检验数等于 0 , 那么该线性规划有无穷多最优解...sigma_j \leq 0 , 但是该非基变量的所有系数都是小于等于 0 的 , 此时该线性规划有 无界解 ; 四、无可行解 ---- 使用人工变量法 ( 大 M 单纯形法 ) 求解线性规划 , 得到最优解时...线性规划迭代范围 ---- 线性规划迭代范围 : 无限范围 : 首先迭代的范围是 无穷多元素的 可行解 的集合 ; 有限范围 : 缩小该迭代范围为 有限个元素的 基可行解 集合 ; 六、线性规划求解步骤...线性规划求解步骤 : 初始 : 找到初始基可行解 ; 最优 : 最优解判定准则 ; 迭代 : 如果不是最优解 , 如何进行下一次迭代 ;
算法步骤: 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。...希尔排序是基于插入排序的以下两点性质而提出改进方法的:插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位 算法步骤...算法步骤: 从数列中挑出一个元素,称为 “基准”(pivot). 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。...算法过程分为两个步骤: 第一步,以线性时间建立一个Max堆,时间花费O(N); 第二步,通过将堆中的最后一个元素与第一个元素交换,缩减堆的大小并进行下滤,来执行N-1次DeleteMax操作,当算法终止时...性能分析: 平均时间复杂度为线性的 O(n+C) 最优情形下,桶排序的时间复杂度为O(n)。桶排序的空间复杂度通常是比较高的,额外开销为O(n+m)(因为要维护 M 个数组的引用)。
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...在这三个关键步骤中,前两个是机器学习要研究的问题,建立数学模型。第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(不考虑随机优化算法如模拟退火、遗传算法等,对于这些算法,我们后面会专门有文章进行介绍): 公式解 数值优化 前者给出一个最优化问题精确的公式解...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。
导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...在这三个关键步骤中,前两个是机器学习要研究的问题,建立数学模型。第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...动态规划算法 动态规划也是一种求解思想,它将一个问题分解成子问题求解,如果整个问题的某个解是最优的,则这个解的任意一部分也是子问题的最优解。...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。
该篇文章收录专栏—趣学算法 ---- 目录 一、贪心算法 (1)介绍 (2)注意事项 (3)性质 1)贪心选择 2)最优子结构 二、最优装载问题 (1)古董重量排序 (2)贪心策略选择 模板代码 (...1)分析 (2)伪代码 代码优化 (1)分析 (2)伪代码 三、 程序实现 ---- 一、贪心算法 (1)介绍 贪心算法总是做出当前最好的选择,期望通过局部最优解选择,从而得到全局最优的解决方案。...2)有可能得不到最优解,而是得到最优解的近似值。 3)选择什么样的贪心策略直接决定了算法的好坏。...(3)性质 人们通过实践发现,利用贪心算法求解的问题往往具有两个重要的性质:贪心选择和最优子结构。只要满足这两个性质,就可以使用贪心算法。...贪心算法通过一系列的局部最优解(子问题的最优解)得到全局最优解(原问题的最优解),如果原问题的最优解和子问题的最优解没有关系,则求解子问题没有任何意义,无法采用贪心算法。
,或者说优化算法来求解最优的模型。...3)算法 算法便是对应上面最后一步最优模型的具体求解方法,称为最优化算法。 优化算法小结 在机器学习模型求解过程中,一般采用迭代法。...而当优化函数为凸函数时,找到的局部最小值就是全局最小值,该点对应的参数集便是全局最优解。...3)高斯-牛顿法 高斯-牛顿法是一种针对模型优化策略为非线性最小二乘法(LMA)时所设计的特定最优化算法。...6)L-BFGS算法 BFGS法比较适合于解决参数规模适中的无约束最优化问题,而当参数维度特别大时,由于上述获得的近似矩阵随着迭代更新次数的增加将越来越变得稠密,便将导致存储空间不足和计算复杂度过高的问题
导言 ---- 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...在这三个关键步骤中,前两个是机器学习要研究的问题,建立数学模型。第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。...最优化算法的分类 ---- 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(本文不考虑随机优化算法如模拟退火、遗传算法等): 公式求解 数值优化 前者给出一个最优化问题精确的公式解...↓关注后,后台回复【最优化】可下载最优化算法的资料
Math.max(dp_i_1,temp-prices[i]-fee); } return dp_i_0; } 总结 好了,看到这里以上4道关于股票买卖的算法题我们就完美解决了...,小伙伴们看懂了吗,希望大家仔细思考解题思路,能实际运用这套框架哦,这是关于股票买卖算法的第一篇文章,后续会有补充内容,对剩下比较复杂的题目提供解题方法,欢迎阅读我的下一篇文章,一起研究算法吧。...算法专辑: 和同事谈谈Flood Fill 算法
最优装载问题 最优装载问题实质上就是一个简单版的0-1背包问题 问题描述 有一批集装箱要装上一艘载重量为 c 的轮船,其中集装箱 i 的重量为 wi 最优装载问题要求确定在装载体积不受限制的情况下...,将尽可能多的集装箱装上轮船 算法描述 可用贪心算法求解/* * 若尘 */ package loading; import java.util.Arrays; /** * 最优装载问题(贪心算法...]; for (int i = 0; i < n; i++) { // 初始化 d[i] = new Element(w[i], i); } Arrays.sort(d); // 记录最优值...float[]{4, 2, 5, 1, 3}; x = new int[w.length]; float opt = Loading(c, w, x); System.out.println("最优值为...: 10.0 最优解为: 1, 1, 0, 1, 1 采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解Java 源代码代码有详细注释,不懂评论下方留言
领取专属 10元无门槛券
手把手带您无忧上云