首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Turbo码应用

    Turbo码提出两年之内就被首次硬件芯片实现,并一直受到理论研究者和实验科学家的重视。从1997年开始,Turbo码和相关主题的国际会议每隔三年举行一次。 第一次会议(1997年)主要议题集中在编码器串并设计、交织器设计、解码器算法上,当时已经有人提出用DSP进行实时Turbo解码。在这个会议前后已经有了最早采用Turbo 码的商用通信系统。 第二次会议(2000年)的主要内容在分析和提高Turbo码的性能上,并且出现了关于Turbo码在衰落信道等非高斯信道上的研究。也有不少的研究在为实现Turbo码的DSP解码而需要做的简化解码复杂度的问题。对于Turbo码在传送不同信源的研究也在逐步进行中。 第三次会议(2003年)时,Turbo码和其他相关通信技术的结合与应用被更多的关注,多用户检测、与BLAST的结合、多天线信道解码等具体的应用问题也被更多的提到。关于硬件电路和软件实现也是热点之一。有关“类Turbo”码技术,如低密度校验(LDPC)码技术又重新被提出。在Turbo码提出十年左右的时候,它已经发展的比较完善,并且进入应用服务领域。 由于Turbo码的优越性能,研究者在将它用于应用系统上作出了很多努力。例如移动卫星通信系统、数字音频广播、数字视频广播、深空通信、深空网、UMTS/3GPP、CDMA 等系统。除此之外,Turbo码技术也被应用到信息隐藏领域,例如视频和图象的加密和数字水印技术上。Turbo码的思想也被用于分布式信源编码的研究和信源信道联合编码技术中。

    02

    超越MobileNetV3,谷歌提出MobileDets:移动端目标检测新标杆

    Inverted bottleneck layers, IBN已成为终端设备SOTA目标检测方法的主要模块。而在这篇文章里,作者通过重新分析研究终端芯片加速下的常规卷积而对“IBN主导的网络架构是否最优”提出了质疑。作者通过将常规卷积纳入搜索空间取得了延迟-精度均衡下的性能提升,得到了一类目标检测模型:MobileDets。在COCO目标检测任务上,基于同等终端CPU推理延迟,MobileDets以1.7mAP性能优于MobileNetV3+SSDLite,以1.9mAP性能优于MobileNetV2+SSDLite;在EdgeTPU平台上,以3.7mAP性能优于MobileNetV2+SSDLite且推理更快;在DSP平台上,以3.4mAP性能优于MobileNetV2+SSDLite且推理更快。与此同时,在不采用FPN的情况下,在终端CPU平台,MobileDets取得了媲美MnasFPN的性能;在EdgeTPU与DSP平台具有更优的mAP指标,同时推理速度快2倍。

    03
    领券