自动驾驶技术的核心之一是车辆路径规划,而百度Apollo规划器是该平台中负责处理这一任务的关键组件之一。本文将深入介绍百度Apollo规划器的设计原理、功能特点以及示例代码,帮助读者更好地理解和应用这一重要模块。
该论文已经在ICMIR2017会议上发表,附上springer的文献地址 Research and Implementation of Global Path Planning for Unmanned Surface Vehicle Based on Electronic Chart,以及arXiv上的 文献地址。本文接下来主要对论文的实现原理进行分析,在最后给出程序代码,方便后来者研究和参考。
Research and Implementation of Global Path Planning for Unmanned Surface Vehicle Based on Electronic Chart (基于电子海图的水面无人艇全局路径规划) 该论文已经在ICMIR2017会议上发表,附上springer的文献地址 Research and Implementation of Global Path Planning for Unmanned Surface Vehicle Based on
上一篇 openGauss SQL 引擎 中我们介绍了SQL引擎概览、SQL解析以及查询优化器的优势和优化技术的分类,本文将详细介绍查询优化的相关内容。
【玩转 GPU】AI绘画、AI文本、AI翻译、GPU点亮AI想象空间-腾讯云开发者社区-腾讯云 (tencent.com)
更多请参阅:十三个经典算法研究与总结、目录+索引。 ---------------------------------- 博主说明: 1、本经典算法研究系列,此系列文章写的不够好之处,还望见谅。 2、本经典算法研究系列,系我参考资料,一篇一篇原创所作,转载必须注明作者本人July及出处。 3、本经典算法研究系列,精益求精,不断优化,永久更新,永久勘误。
A* 算法(A-Star Algorithm)是一种用于图形路径搜索和图形遍历的启发式搜索算法。它结合了Dijkstra算法的广度优先搜索和启发式函数(即估计函数),以找到从起点到目标点的最优路径。A* 算法在计算机科学和人工智能领域广泛应用,特别是在路径规划、游戏开发、机器人控制等领域。
大多数同学苦于刷了很多算法却在项目中很少应用,难以加深印象,而且总有同学问着有啥用啊有啥用啊?为了刷题而刷题,带着需求场景去应用算法是最为直接的学习方式。
针对多任务点的全局路径规划,是指在存在静态障碍物的环境中,给定水面无人艇起始点、目标点以及多个任务点的情况下,设计从起始点出发,安全地遍历各个任务点,最终返回目标点的全局路径,要求行驶的航路代价总和最小。 本文主要解决水面无人艇在对多个任务点进行全局路径规划时的设计和实现算方法,相关研究和设计已在 International Journal of Vehicle Autonomous Systems (IJVAS) EI期刊发表。附InderScience Publiers - IJVAS的官方文献下载链接 Design and Implementation of Global Path Planning System for Unmanned Surface Vehicle among Multiple Task Points,以及arXiv的下载链接。官方文献下载链接需要科学上网才可以打开。 本文主要讨论论文的实现原理,并给出部分程序源代码,方便后来者研究和参考。
---- 新智元报道 编辑:David Joey 【新智元导读】研究人员提出了一种多路径神经架构搜索(MPNAS)方法,为多领域建立一个具有异质网络架构的统一模型。 面向视觉任务(如图像分类)的深度学习模型,通常用来自单一视觉域(如自然图像或计算机生成的图像)的数据进行端到端的训练。 一般情况下,一个为多个领域完成视觉任务的应用程序需要为每个单独的领域建立多个模型,分别独立训练,不同领域之间不共享数据,在推理时,每个模型将处理特定领域的输入数据。 即使是面向不同领域,这些模型之间的早期层的有些特
无人驾驶规划系统的分层结构设计源于2007年举办的DAPRA城市挑战赛,在比赛中多数参赛队都将无人车的规划模块分为三层设计:任务规划,行为规划和动作规划,其中,任务规划通常也被称为路径规划或者路由规划(Route Planning),其负责相对顶层的路径规划,例如起点到终点的路径选择。
如果说过去是算法根据芯片进行优化设计的时代,那么英特尔对 Mobileye 的收购,预示着一个新时代的到来:算法和芯片协同进化的时代。今天我们着重了解下智能驾驶发展驱动下,「算法」这一细分技术领域都有哪些创新和进步。
图搜索算法是解决图论问题的一种重要方法,广泛应用于路径规划、网络分析、游戏AI等领域。本文将深入浅出地介绍图搜索算法的理论知识、核心概念,探讨常见问题、易错点以及如何避免,同时附带代码示例。
1. 算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。 自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。 信息正反馈——蚂蚁在寻找食物时,在其经过的路径上释放信息素(外激素)。蚂蚁基本没有视觉,但能在小范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度
网址:https://learning.oreilly.com/library/view/graph-algorithms-/9781492060116/
随着机器人技术、智能控制技术、硬件传感器的发展,机器人在工业生产、军事国防以及日常生活等领域得到了广泛的应用。而作为机器人行业的重要研究领域之一,移动机器人行业近年来也到了迅速的发展。移动机器人中的路径规划便是重要的研究方向。移动机器人的路径规划方法主要分为传统的路径规划算法、基于采样的路径规划算法、智能仿生算法。传统的路径规划算法主要有A*算法、Dijkstra算法、D*算法、人工势场法,基于采样的路径规划算法有PRM算法、RRT算法,智能仿生路径规划算法有神经网络算法、蚁群算法、遗传算法等。
深度优先搜索是一种从起始节点出发,沿着图的分支尽可能深入,然后回溯并继续探索其他分支的遍历方法。
作者:July 二零一一年三月十日。 出处:http://blog.csdn.net/v_JULY_v --------------------------------------------------
周日的下午,微信simplemain,老王又来找大伙儿聊技术了~~ 今天想跟大家聊的,是我们经常用到,但是却让大家觉得十分神秘的那个算法:A* 。 想必大家都玩儿过对战类的游戏,老王读书那会儿,中午吃
作者:Haotian Wang,Xiaolong Zhou,Jianyong Li,Zhilun Yang,Linlin Cao
广度优先搜索的基本思想是从起始节点开始,先访问所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,层层推进。其基本步骤如下:
随着应用场景的日益复杂,机器人对旨在生成无碰撞路径(轨迹)的自主运动规划技术的需求也变得更加迫切。虽然目前已产生了大量适应于不同场景的规划算法,但如何妥善地对现有成果进行归类,并分析不同方法间的优劣异同仍是需要深入思考的问题。以此为切入点,首先,阐释运动规划的基本内涵及经典算法的关键步骤;其次,针对实时性与解路径(轨迹)品质间的矛盾,以是否考虑微分约束为标准,有层次地总结了现有的算法加速策略;最后,面向不确定性(即传感器不确定性、未来状态不确定性和环境不确定性)下的规划和智能规划提出的新需求,对运动规划领域的最新成果和发展方向进行了评述,以期为后续研究提供有益的参考。
论文地址:https://www.tandfonline.com/doi/full/10.1080/08839514.2023.2254048
图与树相比较,图具有封闭性,可以把树结构看成是图结构的前生。在树结构中,如果把兄弟节点之间或子节点之间横向连接,便构建成一个图。
有若干个城市,任何两个城市之间的距离都是确定的,现要求一旅行商从某城市出发必须经过每一个城市且只在一个城市逗留一次,最后回到出发的城市,问如何事先确定一条最短的线路已保证其旅行的费用最少?
在最近被ECCV2020接收的论文AutoSTR中,第四范式的研究人员提出了使用网络结构搜索(NAS)技术来自动化设计文本识别网络中的特征序列提取器,以提升文本识别任务的性能。
1. 坐标访问和父节点查找约定顺序:右,右上,上,左上,左,左下,下,右下,沿X轴增加的方向为右,沿Y轴增加的方向为上,父节点可能会有多个,这里选择代价最小最后搜索的为父节点。
一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达
免疫算法是受生物免疫系统的启发而推出的一种新型的智能搜索算法。它是一种确定性和随机性选择相结合并具有“勘探”与“开采”能力的启发式随机搜索算法。免疫算法将优化问题中待优化的问题对应免疫应答中的抗原,可行解对应抗体(B细胞),可行解质量对应免疫细胞与抗原的亲和度。如此则可以将优化问题的寻优过程与生物免疫系统识别抗原并实现抗体进化的过程对应起来,将生物免疫应答中的进化过程抽象成数学上的进化寻优过程,形成一种智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。相对于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)的不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。 1.2 算法操作步骤 (1)首先进行抗原识别,即理解待优化的问题,对问题进行可行性分析,提取先验知识,构造出合适的亲和度函数,并制定各种约束条件。 (2)然后初始化抗体群,通过编码把问题的可行解表示成解空间中的抗体,在解的空间内随机产生一个初始种群。 (3)对种群中的每一个可行解进行亲和度评价。(记忆单元的更新:将与抗原亲和性高的抗体加入到记忆单元,并用新加入的抗体取代与其亲和性最高的原有抗体(抗体和抗体的亲和性计算)) (4)判断是否满足算法终止条件;如果满足条件则终止算法寻优过程,输出计算结果;否则继续寻优运算。 (5)计算抗体浓度和激励度。(促进和抑制抗体的产生:计算每个抗体的期望值,抑制期望值低于阈值的抗体;可以知道与抗原间具有的亲和力越高,该抗体的克隆数目越高,其变异率也越低) (6)进行免疫处理,包括免疫选择、克隆、变异和克隆抑制。 免疫选择:根据种群中抗体的亲和度和浓度计算结果选择优质抗体,使其活化; 克隆:对活化的抗体进行克隆复制,得到若干副本; 变异:对克隆得到的副本进行变异操作,使其发生亲和度突变; 克隆抑制:对变异结果进行再选择,抑制亲和度低的抗体,保留亲和度高的变异结果。 (7)种群刷新,以随机生成的新抗体替代种群中激励度较低的抗体,形成新一代抗体,转步骤(3)。 免疫算法运算流程图
飞机蒙皮、船舶舱体、高铁车身等大型复杂部件高效高品质制造是航空航天、海洋舰船、轨道交通等领域重大装备发展的根基,是国家加快培育及发展的战略性新兴产业,在引领国民经济发展、服务国家重大需求等过程中发挥着至关重要的作用[1]。
寻路对很多游戏来讲都是不可或缺的元素,在一般的游戏中,使用一些基本的寻路算法(譬如 BFS, Dijkstra 或者 A* 等等)就可以很好的解决寻路问题,但是在另一些游戏中,尤其是在游戏地图比较庞大的情况下,这些基本寻路算法需要耗费大量的时间进行寻路,进而造成游戏卡顿,这使得寻路优化变得非常重要.
广度优先搜索: 从初始节点S0开始逐层向下扩展,在第n层节点还没有全部搜索完之前,不进入第n+1层节点的搜索。Open表中的节点总是按进入的先后排序,先进入的节点排在前面,后进入的节点排在后面。
写了个拼图游戏,探讨一下相关的AI算法。拼图游戏的复原问题也叫做N数码问题。 拼图游戏 N数码问题 广度优先搜索 双向广度优先搜索 A*搜索 游戏设定 实现一个拼图游戏,使它具备以下功能: 1、自由选取喜欢的图片来游戏 2、自由选定空格位置 3、空格邻近的方块可移动,其它方块不允许移动 4、能识别图片是否复原完成,游戏胜利时给出反馈 5、一键洗牌,打乱图片方块 6、支持重新开始游戏 7、难度分级:高、中、低 8、具备人工智能,自动完成拼图复原 9、实现几种人工智能算法:广度优先搜索、双向广度优先搜索、A*搜
作者介绍 qiannzhang(张倩),腾讯云数据库专家工程师,具备多年数据库内核研发经验,在大数据分析领域深耕多年。加入腾讯后,主要负责CDW PG数据库SQL引擎相关特性的研发工作。 背景介绍 CDW PG是腾讯自主研发的新一代分布式数据库,采用无共享的MPP集群架构,具备业界领先的数据分析查询处理能力,适用于PB级海量数据的OLAP应用场景。 在OLAP场景中,多表连接查询是最主要的查询类型之一。CDW PG支持多种连接类型,包括left join、right join、inner join和fu
邻接矩阵的优点和缺点都很明显。优点是简单、易理解,对于大部分图结构而言,都是稀疏的,使用炬阵存储空间浪费就较大。
自动驾驶中的决策规划模块是衡量和评价自动驾驶能力最核心的指标之一,它的主要任务是在接收到传感器的各种感知信息之后,对当前环境作出分析,然后对底层控制模块下达指令。典型的决策规划模块可以分为三个层次:全局路径规划、行为决策、运动规划。
查询与“平安银行”相关信息(所属概念板块、发布公告、属于深股通/沪股通、股东信息)
前 排 最近这个春节又快到了,虽然说什么有钱没钱回家过年。但也有部分小伙伴早已经备好了盘缠和干粮,准备在这个难得的假期来一场说走就走的旅行了。毕竟世界这么大我想去看看呵……等等,醒醒吧各位 但是,作为21世纪的新一代青年,即使咱穷,梦想还是要有的,对吧。那么,问题来了,如何用最少的钱,环绕中国各大城市走一波?咳咳,今天小编就是为解决此问题而来的。顺带提一波,最近天冷了。小编在这里给大家送上最真切的关心…… * 内容提要: *旅行商问题介绍 *模拟退火算法 *旅行商问题的解决 我想用最少的钱环游中国一圈 01
在自动驾驶技术发展中,安全性一直作为首要因素被业界重视。行为决策与运动规划系统作为该技术的关键环节,对智慧属性具有更高要求,需要不断地随着环境变化做出当前的最优策略与行为,确保车辆行驶过程中的安全,文中分别对行为决策和运动规划系统进行深层次阐述。首先,介绍行为决策中基于规则的决策算法、基于监督学习的决策算法、基于强化学习的决策算法的算法理论及其在实车中的应用,然后,介绍运动规划中基于采样的规划算法、基于图搜索的规划算法、基于数值优化的规划算法和基于交互性的规划算法,并对算法的设计展开讨论,从安全角度分析行为决策和运动规划,对比各类方法的优缺点。最后,展望自动驾驶领域未来的安全研究方向及挑战。
作者简介:申泽邦(Adam Shan),兰州大学在读硕士研究生,主攻无人驾驶,深度学习;兰大未来计算研究院无人车团队骨干,在改自己的无人车,参加过很多无人车Hackathon,喜欢极限编程。
自动驾驶的“大脑”——决策规划篇 中国人工智能系列白皮书-智能驾驶2017 ▌决策规划技术概述 ---- 智能汽车 ( Intelligent Vehicles) 是智能交通系统(Intelligent Transportation Systems) 的重要组成部分。智能汽车根据传感器输入的各种参数等生成期望的路径,并将相应的控制量提供给后续的控制器。所以决策规划是一项重要的研究内容,决定了车辆在行驶过程中车辆能否顺畅、准确得完成各种驾驶行为。 决策规划是自动驾驶的关键部分之一,它首先融合多传感信
A*算法是一种大规模静态路网中求解最短路径最有效的搜索方法,相比于Dijkstra算法,它提供了搜索方向的启发性指引信息,在大多数情况下大大降低了Dijkstra算法无效的冗余的扩展搜索,因此也成为自动驾驶路径规划中的首选算法。
作者简介:byheaven,2018年加入美团无人配送部,目前在pnc组负责决策规划相关工作。
由于在公众号上文本字数太长可能会影响阅读体验,因此过于长的文章,我会使用"[L1]"来进行分段。这系列将介绍Seq2Seq模型中的Beam Search算法。第一篇文章:[L1]Seq2Seq中Beam Seach的应用场景。
领取专属 10元无门槛券
手把手带您无忧上云