① 判断置换算法好坏的标准: 具有较低的页面置换频率。 ② 内存抖动: 页面的频繁更换,导致整个系统效率急剧下降,这个现象称为内存抖动。 一、最佳置换算法 1.作用 其所选择的被淘汰页,
统计学习方法 (李航) 维特比算法例题 的代码实现, (HMM 预测) import numpy as np num_hidden_states = 3 num_observations = 2 # 红, 黑 obs_map = {'红': 0, '白': 1} # matrix[t-1, t] ===> t-1 --> t transition_matrix = np.array([[.5, .2, .3], [.3, .5, .2],
解决最优化问题的算法一般包含一系列的步骤,每一步都有若干的选择。对于很多最优化问题,只需要采用简单的贪心算法就可以解决,而不需要采用动态规划方法。贪心算法使所做的局部选择看起来都是当前最佳的,通过局部的最优化选择来产生全局最优解。本文将介绍贪心算法的理论基础和一些简单应用。在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。
matlab中switch语句看了好几本教材上的例子都未看懂核心,不知谁能提供if-else-end语句所对应的是多重判断选择,而有时也会遇到多分支判断选择的问题。 MATLAB语言为解决多分支判断选择提供了switch-case语句。 switch-case语句的一般表达形式为: switch〈选择判断量〉 Case 选择判断值1 选择判断语句1 case 选择判
贪心算法(又称贪婪算法)是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
贪心算法属于比较简单的算法,它总是会选择当下最优解,而不去考虑单次递归时是否会对未来造成影响,也就是说不考虑得到的解是否是全局最优。在很多实际问题中,寻找全局最优解的代价是非常大的,这时候就可以通过求次优解来解决问题,这种思想其实在软件工程中很常见,例如React中著名的DOM Diff算法中需要对比两棵DOM树,树的完全对比时间复杂度为O(n^3),而React团队通过只比较同层节点的策略将问题简化为O(n),也就是说得到的结果从全局角度来说并不一定是绝对最优的,但是它可以在大多数情况下表现并不差。
先来先服务算法指的是按照作业/进程到达的先后顺序进行服务的,主要从“公平”的角度考虑。用于作业调度时,考虑的是哪个作业先到达后备队列;用于进程调度时,考虑的是哪个进程先到达就绪队列,是非抢占式算法,不会导致饥饿(某进程/作业长时间得不到服务)
上篇一文学会动态规划解题技巧 被不少号转载了,其中发现有一位读者提了一个疑惑,在求三角形最短路径和时,能否用贪心算法求解。所以本文打算对贪心算法进行简单地介绍,介绍完之后我们再来看看是否这道三角形最短路径问题能用贪心算法来求解。
它的基本思想是假设某问题的解决步骤可能有N步,且每一步的解决方法又可能有M种,那么就按照某种顺序依次试探每一步中的各种方法,一旦某一步的所有方法都失效,那么就返回上一步继续试探上一步骤的其他M−1种方法。简而言之就是从一条路往前走,能进则进,不能进则退回来,换一条路再试。
在理解了我们需要解决的机器学习问题之后,我们可以思考一下我们需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风格或学习模型,并
在理解了我们需要解决的机器学习问题之后,我们要思考需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 机器学习 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风格
在理解了我们需要解决的机器学习问题之后,我们要思考需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 机器学习 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风
二分的本质是边界,将区间分为两个,一边满足某条性质,另一边不满足某条性质。然后可以找到这两个区间的边界,找任意一个区间的边界都可以。
只和邻居路由器交换信息 交换--------------路由表 邻居之间相互通气----------算计算计-----------每三十秒交换一次情报---------如果超过180s没收到邻居信息--------判定邻居没了----------并更新自己的路由表 和邻居交流然后自己合计
1≤l≤r≤n, 1≤n,m≤100000 −1000≤数列中元素的值≤1000
将多个区间进行合并,其中有交集的区间合为一个区间,没有交集的区间保留原状。注意,这里端点重合也算作一种交集区间。
让i,j向中间移动,如果i ≤ x,则继续移动,否则等待交换,如果 j ≥ x ,则继续移动,否则等待交换。当i和j都等待交换的时候,交换ij,然后继续移动。直到i大于为止。
适用于c++,java和python没有这个问题,因为java有大整数类,python自带,默认数是无限大。
贪心策略是指从问题的初始状态出发,通过若干次贪心选择得出最优值(或较优解)的一种解法
然后构造数组b,b[1],b[2]…b[n]为差分数组。其中通过差分数组的前缀和来表示a数组,即a[n] = b[1] + b[2]+…+b[n]。
如果特定情况下需要,我也可以上matlab,python,delphi,c#,c++等等。
如果说用结构体+指针的方式实现链表和栈的话,每次需要new一个新节点,非常慢。笔试题链表大小在10万级别,因此笔试题一般不会采用这种动态链表的方式。通常采用数组模拟链表的方式,这种方式更快。
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间。算法中的基本操作的执行次数,为算法的时间复杂度。
在本专栏的第十三篇博文数学建模学习笔记(十三)神经网络——中:matlab程序实现记录过如何在matlab用代码进行神经网络的训练。 本篇内容将记录如何使用Neural Net Fitting工具箱,做神经网络预测时更为简便。
基础数据结构 例题 例题1 UVa11995 AC I Can Guess the Data Structure! ADT 题解 例题2 UVa11991 AC Easy Problem from Rujia Liu 排序或者善用STL 题解 例题3 LA3135 AC Argus 优先队列;模拟 题解 例题4 UVa11997 AC K Smallest Sums 优先队列;有序表合并 题解 例题5 LA3644 AC X-Plosives 并查集
自变量趋于有限值时函数的极限 极限的描述: 极限的定义: 推论: 极限的实际含义: 左极限 右极限 单侧极限 极限存在的定理 课后例题 例题4、例题5 例题4: 自变量趋于无穷大时函数的极限 描述性定
本文分享如何利用现有的技术解决 水表自动读数问题。 核心的思路是:定位数字区域并截取、将目标区域中的数字分割出来、识别各个位置的数字。 涉及的技术:YOLOv3 目标检测、图像处理、分类
第1章 绪论 1.1 目的 1.2 历史 1.3 应用 1.4 生物学的启示 参考文献 第2章 神经元模型和网络结构 2.1 目的 2.1 理论和实例 2.2.1 符号 2.2.2 神经元模型 2.2.3 网络结构 2.3 小结 2.4 例题 2.5 结束语 习题 第3章 一个说明性实例 3.1 目的 3.2 理论和实例 3.2.1 问题描述 .3.2.2 感知机 3.2.3 hamming网络 3.2.4 hopfield网络 3.3 结束语 习题 第4章 感知机学习规则 4.1 目的 4. 2 理论和
Need[i, j]=Max[i, j]-Allocation[i, j] #尚需要的资源量=最大资源需求量-已分配资源量
关于首次适应算法、最佳适应算法和最差适应算法,先看一下百度百科的解释,已经说出了三者的最大区别。
《算法零基础100讲》(第19讲) 进制转换(一) - 入门_英雄哪里出来-CSDN博客https://blog.csdn.net/WhereIsHeroFrom/article/details/120875977
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 近几天推送了以决策树为基础模型的,性能优秀,应用广泛的 XGBoost 集成算法。与之相似的,比 XGBoost 发明还早的 GBDT(梯度提升决策树),它们的共同点都是以决策树为基础模型,要想深刻的理解这两种重要的集成算法,如果能更好地理解决策树算法的实现,会有助于理解它们。 下面,我们用源码实现决策树的回归算法,提到决策树一般
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最前列并且不跳过索引中的列。
首先,离散化是指数值域非常大,例如 ,但是个数相对较少,例如只有 个, 但在我们的程序中需要通过这些数值作为下标,且依赖的是这些数值之间的顺序关系(当然通常这些数是有序的)。如果为了这 个数而开一个 的数组过于浪费空间,因此我们可以采用离散化的方法,将这些数映射到 上,这个过程就叫做离散化。
显然,生产者等待mutex锁的释放,而消费者却在等待生产者生产出来资源后,将自己唤醒.
和粒子群算法一样,模拟退火算法也属于启发式算法的一种。 启发式算法,可参照下面的定义。 启发式算法:在搜索最优解的过程中利用到了原来搜索过程中得到的信息,且这个信息会改进我们的搜索过程。
本文在写作过程中参考了大量资料,不能一一列举,还请见谅。 贪心算法的定义: 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。 解题的一般步骤是: 1.建立数学模型来描述问题; 2.把求解的问题分成若干个子问题; 3.对每一子问题求解,得到子问题的局部最优解; 4.把子问题的局部最
1. a ^ b = b ^ a 2. a ^ b ^ c = a ^ (b ^ c) = (a ^ b) ^ c; 3. d = a ^ b ^ c 可以推出 a = d ^ b ^ c. 4. a ^ b ^ a = b.
作业调度算法 1、FCFS算法(先来先服务算法):算法每次从后备作业队列中选择最先进入该队列的一个或几个作业,将它们调入内存,分配必要的资源,创建进程并放入就绪队列。FCFS调度算法的特点是算法简单,但效率低;对长作业比较有利,但对短作业不利(相对SJF和高响应比);有利于CPU繁忙型作业,而不利于I/O繁忙型作业。 2、SJF算法(短作业优先算法):从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。SJF调度算法的平均等待时间、平均周转时间最少;但对长作业非常不利。 3、HRN算法(
一个程序设计人员应具备算法、数据结构、程序设计方法以及语言工具四个方面的知识,其中算法是灵魂,数据结构是加工对象,语言是工具,编程需要采用合适的方法。
上一篇文章当中我们接触了两指针算法,在上一篇文章当中,我们使用了一快一慢两个指针来访问数组,从而避免了删除元素时需要移动数组的巨大开销。
面试例题7:你需要存储元素到某种数据结构中,而且要确保元素在自然队列中没有重复,下面哪个接口能保证这种能力?
请问:9点上班,几点出门 答:(30+4*45+150)/6=60 再问:想把现有50%概率提高到85%需要多长时间出来?
MySQL Enterprise Monitor是MySQL官方提供的一款监控和管理MySQL数据库的工具。 其功能之一包括MySQL Query Analyzer工具,通过MySQL Query Analyzer可以帮助用户识别慢查询和瓶颈,监视在MySQL服务器上执行的SQL语句,并显示每个查询的详细信息、执行次数和执行时间等有关性能的详细信息。
一、介绍 在互联网公司笔试题中,总有那么一两道题是考查是否会求算法的时间复杂度,在此列出一些例题进行研究和探讨。 二、例题 题目解析: 时间复杂度主要取决于N的最高次幂数,即最大的影响因子,所以答案是
平均寻道长度是磁盘调度算法的性能指标之一,用于评估磁头在访问磁盘上的数据时的平均移动距离。
领取专属 10元无门槛券
手把手带您无忧上云