首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法

    粒子群算法(particle swarm optimization,PSO)是计算智能领域一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法就是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。 假设在一个 D D D维的搜索空间中,由 n n n个粒子组成的种群 X = ( X 1 , X 2 , ⋯   , X n ) \boldsymbol{X}=(X_1,X_2,\dotsm,X_n) X=(X1​,X2​,⋯,Xn​),其中第 i i i个粒子表示为一个 D D D维的向量 X i = ( X i 1 , X i 2 , ⋯   , X i D ) T \boldsymbol{X_i}=(X_{i1},X_{i2},\dotsm,X_{iD})^T Xi​=(Xi1​,Xi2​,⋯,XiD​)T,代表第 i i i个粒子在 D D D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置 X i \boldsymbol{X_i} Xi​对应的适应度值。第 i i i个粒子的速度为 V = ( V i 1 , V i 2 , ⋯   , V i D ) T \boldsymbol{V}=(V_{i1},V_{i2},\dotsm,V_{iD})^T V=(Vi1​,Vi2​,⋯,ViD​)T,其个体最优极值为 P i = ( P i 1 , P i 2 , ⋯   , P i D ) T \boldsymbol{P_i}=(P_{i1},P_{i2},\dotsm,P_{iD})^T Pi​=(Pi1​,Pi2​,⋯,PiD​)T,种群的群体最优极值为 P g = ( P g 1 , P g 2 , ⋯   , P g D ) T \boldsymbol{P_g}=(P_{g1},P_{g2},\dotsm,P_{gD})^T Pg​=(Pg1​,Pg2​,⋯,PgD​)T。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 V i d k + 1 = ω V i d k + c 1 r 1 ( P i d k − X i d k ) + c 2 r 2 ( P g d k − X i d k ) (1) V_{id}^{k+1}=\omega V_{id}^k+c_1r_1(P_{id}^k-X_{id}^k)+c_2r_2(P_{gd}^k-X_{id}^k)\tag{1} Vidk+1​=ωVidk​+c1​r1​(Pidk​−Xidk​)+c2​r2​(Pgdk​−Xidk​)(1) X i d k + 1 = X i d k + V k + 1 i d (2) X_{id}^{k+1}=X_{id}^k+V_{k+1_{id}}\tag {2} Xidk+1​=Xidk​+Vk+1id​​(2)其中, ω \omega ω为惯性权重; d = 1 , 2 , ⋯   , n d=1,2,\dotsm,n d=1,2,⋯,n; k k k为当前迭代次数; V i d V_{id} Vid​为粒子的速度; c 1 c_1 c1​和 c 2 c_2 c2​是非负的常数,称为加速度因子; r 1 r_1 r1​和 r 2 r_2 r2​是分布于 [ 0 , 1 ] [0,1] [0,1]区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间 [ − X m a x , X m a x ] [-X_{max},X_{max}] [−Xmax​,Xmax​]、 [ − V m a x , V m a x ] [-V_{max},V_{max}] [−Vmax​,Vmax​]。

    03

    关于libsvm的PCA和 网格寻优「建议收藏」

    写在前面:这篇博客写的很乱,只是先大致记录一下,后期行得通再慢慢补充。 之前稍微整理了libsvm的内容,但是还有很多没搞懂,最近因为论文思路卡住了,所以又反过来弄libsvm 因为看人家的论文,偏应用的方面,流程都非常完整,特征提取以后,一般有降维,有参数寻优,所以就很想实现这些功能,因为对比实验真的一点也写不下去了,头大…而且svm的工具箱非常的成熟了,除了常用的libsvm工具包,还有Libsvm-Faruto Ultimate的工具包,这是一个基于libsvm的工具箱,增加了许多实用的功能:降维、参数寻优、可视化等等,所以我想试一下能不能丰富我的实验,不然就只能好好补对比实验了…

    01

    各种智能优化算法比较与实现(matlab版)

    免疫算法是受生物免疫系统的启发而推出的一种新型的智能搜索算法。它是一种确定性和随机性选择相结合并具有“勘探”与“开采”能力的启发式随机搜索算法。免疫算法将优化问题中待优化的问题对应免疫应答中的抗原,可行解对应抗体(B细胞),可行解质量对应免疫细胞与抗原的亲和度。如此则可以将优化问题的寻优过程与生物免疫系统识别抗原并实现抗体进化的过程对应起来,将生物免疫应答中的进化过程抽象成数学上的进化寻优过程,形成一种智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。相对于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)的不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。 1.2 算法操作步骤 (1)首先进行抗原识别,即理解待优化的问题,对问题进行可行性分析,提取先验知识,构造出合适的亲和度函数,并制定各种约束条件。 (2)然后初始化抗体群,通过编码把问题的可行解表示成解空间中的抗体,在解的空间内随机产生一个初始种群。 (3)对种群中的每一个可行解进行亲和度评价。(记忆单元的更新:将与抗原亲和性高的抗体加入到记忆单元,并用新加入的抗体取代与其亲和性最高的原有抗体(抗体和抗体的亲和性计算)) (4)判断是否满足算法终止条件;如果满足条件则终止算法寻优过程,输出计算结果;否则继续寻优运算。 (5)计算抗体浓度和激励度。(促进和抑制抗体的产生:计算每个抗体的期望值,抑制期望值低于阈值的抗体;可以知道与抗原间具有的亲和力越高,该抗体的克隆数目越高,其变异率也越低) (6)进行免疫处理,包括免疫选择、克隆、变异和克隆抑制。 免疫选择:根据种群中抗体的亲和度和浓度计算结果选择优质抗体,使其活化; 克隆:对活化的抗体进行克隆复制,得到若干副本; 变异:对克隆得到的副本进行变异操作,使其发生亲和度突变; 克隆抑制:对变异结果进行再选择,抑制亲和度低的抗体,保留亲和度高的变异结果。 (7)种群刷新,以随机生成的新抗体替代种群中激励度较低的抗体,形成新一代抗体,转步骤(3)。 免疫算法运算流程图

    02

    方程就是二叉树森林?遗传算法从数据中直接发现未知控制方程和物理机理

    机器之心专栏 机器之心编辑部 偏微分方程是领域知识的一种简洁且易于理解的表示形式,对于加深人类对物理世界的认知以及预测未来变化至关重要。然而,现实世界的系统过于紊乱和无规律,控制方程往往具有复杂的结构,难以从机理模型中直接推导获得。 研究者们希望通过机器学习方法,直接从高维非线性数据中自动挖掘最有价值和最重要的内在规律(即挖掘出问题背后以 PDE 为主的控制方程),实现自动知识发现。 近日,东方理工、华盛顿大学、瑞莱智慧和北京大学等机构的研究团队提出了一种基于符号数学的遗传算法 SGA-PDE,构建了开放的

    03

    OptaPlanner规划引擎的工作原理及简单示例(1)

    在之前的文章中,已介绍过APS及规划的相关内容,并对Optaplanner相关的概念和一些使用示例进行过介绍,接下来的文章中,我会自己做一个规划小程序 - 一个关于把任务分配到不同的机台上进行作业的小程序,并在这个小程序的基础上对OptaPlanner中更多的概念,功能,及使用方法进行讲解。但在此之前,我需要先讲解一下OptaPlanner在进行规则运算的原理。所以,本文是讲述一些关于寻找最优解的过程中的原理性的内容,作为后续通过示例深入讲解的基础。但这些原理知识不会涉及过分深奥的数学算法,毕竟我们的目标不是写一个新的规划引擎出来,更不是要研究各种寻优算法;只是理解一些概念,用于理解OptaPlanner是依据什么找出一个相对优解的。以便在接下来的一系列文章中,可以快速无障碍地理解我所讲解的更细化的OptaPlanner功能。

    00

    梯度下降法原理与仿真分析||系列(1)

    梯度下降法(Gradient Descent)也称为最速下降法(Steepest Descent),是法国数学家奥古斯丁·路易·柯西 (Augustin Louis Cauchy) 于1847年提出来,它是最优化方法中最经典和最简单的一阶方法之一。梯度下降法由于其较低的复杂度和简单的操作而在很多领域得到广泛研究和应用,如机器学习。由梯度下降法衍生了许多其他算法,如次梯度下降法,近端梯度下降法,随机梯度下降法,回溯梯度发,动量加速梯度法等等。本文只介绍最基础的梯度下降法原理和理论分析,与此同时,通过仿真来说明梯度下降法的优势和缺陷。其他重要的梯度下降衍生方法会持续更新,敬请关注。

    02

    人工智能:智能优化算法

    优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域。优化方法是一种以数学为基础,用于求解各种优化问题的应用技术。各种优化方法在上述领域得到了广泛应用,并且已经产生了巨大的经济效益和社会效益。实践证明,通过优化方法,能够提高系统效率,降低能耗,合理地利用资源,并且随着处理对象规模的增加,这种效果也会更加明显。 在电子、通信、计算机、自动化、机器人、经济学和管理学等众多学科中,不断地出现了许多复杂的组合优化问题。面对这些大型的优化问题,传统的优化方法(如牛顿法、单纯形法等)需要遍历整个搜索空间,无法在短时间内完成搜索,且容易产生搜索的“组合爆炸”。例如,许多工程优化问题,往往需要在复杂而庞大的搜索空间中寻找最优解或者准最优解。鉴于实际工程问题的复杂性、非线性、约束性以及建模困难等诸多特点,寻求高效的优化算法已成为相关学科的主要研究内容之一。 受到人类智能、生物群体社会性或自然现象规律的启发,人们发明了很多智能优化算法来解决上述复杂优化问题,主要包括:模仿自然界生物进化机制的遗传算法;通过群体内个体间的合作与竞争来优化搜索的差分进化算法;模拟生物免疫系统学习和认知功能的免疫算法;模拟蚂蚁集体寻径行为的蚁群算法;模拟鸟群和鱼群群体行为的粒子群算法;源于固体物质退火过程的模拟退火算法;模拟人类智力记忆过程的禁忌搜索算法;模拟动物神经网络行为特征的神经网络算法;等等。这些算法有个共同点,即都是通过模拟或揭示某些自然界的现象和过程或生物群体的智能行为而得到发展;在优化领域称它们为智能优化算法,它们具有简单、通用、便于并行处理等特点。 **

    01

    粒子群优化算法(PSO)

    粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。

    01

    粒子群优化算法(PSO)和matlab代码实现

    粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。

    02

    模拟退火算法优化指派问题

    之前二狗已经分别介绍过了,如何用模拟退火算法和遗传算法,进行背包问题的求解。其实背包问题是可以看成是一个可以看成是一个比较特殊的,有线性约束的,0-1规划问题。在数学中还有很多其他特殊的问题,比如指派问题。指派问题可以看成是更特殊的多个背包问题(很多个背包求优,每个背包只能装一样物品)。基本指派问题一般可以描述为有n个任务n个人。要求为n个任务分配给指定的人来完成。并且在这种基本情况下,人和任务需要是一一对应的关系。不能有重复,不能出现两个人做同一个任务,或者一个人同时做两个任务的情况。(这些情况也属于指派问题的范畴,但属于更加复杂的情况,今天就不做讲解)。指派问题已经有了明确可解的算法,也就是我们大家都知道的匈牙利算法。同样的,这个问题也可以使用模拟退火来解决。今天我们就使用模拟退火算法来为大家演示,如何在指派问题进行优化?

    04
    领券