计算集合中第 k 大(小)的元素。就是 topK 相关系列的问题,但是选择算法只需要找到第 k 个就好。
为了在线性时间内解决任意顺序统计量的选择问题,我们可以使用一个基于快速选择算法的方法。快速选择算法是基于快速排序的思想,可以在平均情况下以线性时间复杂度找到第k小的元素。
快速排序在平均情况下时间复杂度为 O(nlog n) 最坏情况下 (如待排序列有序) 为 O(n^2) 要使得在最坏情况下时间复杂度为 O(nlog n) 容易看到,快速排序的性能取决于划分的 对称性 可以每次都将问题划分为相等规模的两个子问题 即 T(n) = 2T(n/2) + n 由主定理解得 T(n) = O(nlog n) 因此可以用一个算法选取当前序列的中位数将其作为主元(pivot),将子问题划分为原问题的一半规模
这个repo有近23个大牛一起维护的,领头的是一个印度工程师!印度我好几年前出差还是去过,当时去的是号称是印度的“硅谷”班加罗尔,确实软件行业非常发达。来看一下这个Github上囊括了几大主流的编程语言:
学会了Python基础知识,想进阶一下,那就来点算法吧!毕竟编程语言只是工具,结构算法才是灵魂。
几位印度小哥在 GitHub 上建了一个各种 Python 算法的新手入门大全。从原理到代码,全都给你交代清楚了。为了让新手更加直观的理解,有的部分还配了动图。
学会了 Python 基础知识,想进阶一下,那就来点算法吧!毕竟编程语言只是工具,结构算法才是灵魂。
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破, 分而治之
算法是一组有序的操作步骤,用于解决特定问题或执行特定任务。它是一种精确而有限的计算过程,以输入数据作为起点,经过一系列明确定义的步骤,最终产生输出结果。算法可以看作是一种计算机程序的抽象,但更侧重于高度抽象和通用性。算法通常具备以下特征:
简介 算法是解决问题的方法,通常一个问题会有多种解决方法,就是有多种算法,那么我们如何决定哪个算法更好或者更高效呢? 为了描述一个算法的效率,就用到了这个大O,包括: O(n) 线性时间操作 O(1)
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/124794.html原文链接:https://javaforall.cn
一般我们在选择算法时,都是想要选择效率最高的算法。那算法的效率,用什么表示?没错!就是用大O表示法。
首先,让我们澄清一下 "RANDOMIZED-SELECT" 这个术语。我猜您可能指的是随机化算法,该算法用于在最坏情况下以O(n)时间复杂度找到一个无序数组的最小元素。在这种情况下,我们可以使用随机化算法来找到一个导致最坏情况发生的划分序列。
类似求TopK问题中最常用的算法中,从时间复杂度最高到中等再到最优分别有不同的做法。在之前的学习中只学到了使用堆来优化TopK问题,但是这样的时间复杂度只能做到O(Nlogk)的大小,其中k是堆的大小。有一种更好的办法是基于快速排序的思想去优化的算法,叫做快速选择算法,它的时间复杂度能够做到O(N)的时间复杂度。这里的思路是:每次通过随机取得一个分区键,假设题目要求数组按照从大到小排序,那么通过将分区键移动到头部start,然后从头部的下一个元素开始遍历数组,遇到比分区键大的元素就交换到分区键后的已排序的下标的下一个位置,该指针假设就叫做index。最后遍历结束后将index的值与start的值交换,此时分区键就被移动到了index指针所指的位置,那么index左边的元素都是比分区键要大的,此时再通过对比index - start 与k的大小关系就可以判断下一次递归要从哪个区间开始,从而减少遍历的次数。
# 一、用O记号表示函数(n ^ 3)/1000-100(n^2)-100n十3。
$$f(n) = \frac{n^3}{1000} - 100n^2 - 100n^{13} = O(n^3).$$
由于直接套用线性回归可能产生过拟合,我们需要加入正则化项,如果加入的是L2正则化项,就是Ridge回归,有时也翻译为岭回归。它和一般线性回归的区别是在损失函数上增加了一个L2正则化的项,和一个调节线性回归项和正则化项权重的系数α。损失函数表达式如下:
本章如果要归结成一个问题的话,可以归结为选择问题,比如要从一堆数中选择最大的数,或最小的数,或第几小/大的数等, 这样的问题看似很简单,似乎没有什么可研究的必要,因为我们已经知道了排序算法,运用排序+索引的方式不就轻松搞定了?但细想,排序所带来的时间复杂度是不是让这个问题无形之中变得糟糕。那算法研究不就是要尽可能避免一个问题高复杂度地解决,让那些不敢肯定有无最优解的问题变得不再怀疑,这也是算法研究者所追求的一种极致哲学。既然排序让这个问题解决的性能无法确定,那我们就抛开排序,独立研究问题本身,看有没有确
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 线性回归及L2正则 大家对于线性回归以及带有二范数正则的线性回归已经比较熟悉
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结。里面对线程回归的正则化也做了一个初步的介绍。提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归。但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展。以下都用矩阵法表示,如果对于矩阵分析不熟悉,推荐学习张贤达的《矩阵分析与应用》。
基数选择和基数排序非常类似,本文侧重点在于 Lucene 的实现,因此对于基数排序的详细原理就不解释了。
算法的五大特性: ⑴ 输入:一个算法有零个或多个输入。 ⑵ 输出:一个算法有一个或多个输出。 ⑶ 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。 ⑷ 确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。 ⑸ 可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
在算法分析中,一个算法的运行时间是否线性依赖于其输入数据的大小。线性时间意味着算法的运行时间与输入数据的大小成正比。对于 SELECT 算法,如果我们将输入元素分为每组 5 个元素,那么该算法的运行时间是线性的,因为它在每组中执行相同的操作,而这些操作的数量与输入数据的大小成正比。
前文 归并排序算法详解 通过二叉树的视角描述了归并排序的算法原理以及应用,很多读者大呼精妙,那我就趁热打铁,今天继续用二叉树的视角讲一讲快速排序算法的原理以及运用。
我们讨论机器学习的时候,其实很多时候都是在讨论算法。今天新智元向大家推荐一个好资源,用Python实现所有算法。该项目在Github上已经获得了超过6.8万星标,可以说非常受欢迎了。
要查找一个数组中的第 K 大元素,有多种方法可以实现,其中常用的方法是使用分治算法或快速选择算法,这两种方法的时间复杂度到时候O(n)。
# 三、再次考虑线性查找问题(参见练习 2.1-3)。假定要查找的元素等可能地为数组中的任意元素,平均需要检查输入序列的多少元素?最坏情况又如何呢?用0记号给出线性查找的平均情况和最坏情况运行时间。证
我们讨论机器学习的时候,其实很多时候都是在讨论算法。今天新智元向大家推荐一个好资源,用Python实现所有算法。该项目在Github上已经获得了超过2.7万星标,可以说非常受欢迎了。
约莫十五年前,当我刚刚开始参加工作时,赶上 Linux 发布划时代的 2.6 内核。在这个大家都翘首期盼的内核版本中,最令人兴奋的便是 O(1) scheduler。本文来谈谈这个算法是如何实现的。不过,在详细讲解 O(1) scheduler 之前,我们先简单回顾一下让人诟病许久的 2.4 scheduler,了解其传承,同时以史为镜。 2.4 scheduler 的问题 Linux 2.4 scheduler 支持 SMP(Symmetric Multi-Processing),然而,由于只用一个 gl
下面我们来逐一分析十大经典排序算法,主要围绕下列问题展开: 1、算法的基本思想是什么? 2、算法的代码实现? 3、算法的时间复杂度是多少?(平均、最好、最坏)什么情况下最好?什么情况下最坏? 4、算法的空间复杂度是多少? 5、算法的稳定性如何?
问题与答案 1) [正确或错误]:K – NN算法在测试时间上做的计算比训练时间多。 A)正确 B)错误 答案:A 该算法的训练阶段只包括存储训练样本的特征向量和类标签。 在测试阶段,测试点是通过分
要设计一个 O(n) 时间的算法来找到集合 S 中最接近中位数的 k 个元素,我们可以使用快速选择算法(QuickSelect)。该算法基于快速排序的思想,可以在平均情况下以线性时间复杂度找到第 k 小的元素。
今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋太浪费,改成扔杯子,扔破碗什么的。
今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。
原始题目很简单,给你输入一个无序的数组nums和一个正整数k,让你计算nums中第k大的元素。
导语:在推荐领域,用户或物品的冷启动,以及如何使推荐结果更加多样的问题在很多实际应用场景中都会遇到。本文主要讲述了神盾推荐在腾讯内部业务场景中,使用MAB方法来解决这两个问题的经验总结,同时本文也较为简单的对MAB问题做了综述性介绍,希望能够帮助到大家。 1问题 1.1 某业务拉新场景—冷启动决策问题 拉新场景是指在大流量业务场景中投放拉新业务的相关优质内容,从而吸引用户访问,快速增加用户量。这个拉新场景需要从4千+专辑池(每日会加入一些新的物品)中挑选出两个专辑投放给用户,使用这两个专辑来吸引新用户,
关键时刻,第一时间送达! 作者简介:chen_h,AI 算法工程师,擅长利用 TensorFlow 处理 NLP 问题。曾任职蘑菇街(美丽联合集团)和 AI100(CSDN)担任算法工程师。主要负责项目:语料文本分类,聊天机器人设计与开发,组织举办大数据竞赛。 本文来自作者在 GitChat 上分享「在实际项目中,如何选择合适的机器学习模型」。 本文我们主要面向初学者或中级数据分析师,他们对识别和应用机器学习算法都非常感兴趣,但是初学者在面对各种机器学习算法时,都会遇到一个问题是 “在实际项目中,我到底
在计算机科学中,算法分析是非常关键的部分。找到解决问题的最有效算法非常重要。可能会有许多算法能够解决问题,但这里的挑战是选择最有效的算法。现在关键是假如我们有一套不同的算法,应该如何识别最有效的算法呢?在这里算法的空间和时间复杂度的概念出现了。空间和时间复杂度是算法的测量尺度。我们根据它们的空间(内存量)和时间复杂度(操作次数)来对算法进行比较。
算法复杂度是我们来衡量一个算法执行效率的一个度量标准,算法复杂度通常主要有时间复杂度和空间复杂度两种。时间复杂度就是指算法代码在运行最终得到我们想要的结果时所消耗的时间,而空间复杂度则是指算法中用来存储的数据结构所占用的空间。往往一个时间复杂度比较低的算法拥有着较高的空间复杂度,两者是互相影响的,我们前面讲解数据结构中的一些例子和代码也足以说明这一点。本文会简单介绍一下用于描述算法的性能和复杂程度的大O表示法。
算法复杂度是我们来衡量一个算法执行效率的一个度量标准,算法复杂度通常主要有时间复杂度和空间复杂度两种。时间复杂度就是指算法代码在运行最终得到我们想要的结果时所消耗的时间,而空间复杂度则是指算法中用来存储的数据结构所占用的空间。往往一个时间复杂度比较低的算法拥有着较高的空间复杂度,两者是互相影响的,我们前面讲解数据结构中的一些例子和代码也足以说明这一点。本文会简单介绍一下用于描述算法的性能和复杂程度的大O表示法。 我们先来看一段简单的代码,来帮助我们理解什么是大O表示法: function increm
算法的时间复杂度和空间复杂度是评估算法性能的两个重要指标。时间复杂度主要关注算法执行过程中所需的时间随输入规模的变化情况,而空间复杂度则关注算法执行过程中所需的最大存储空间或内存空间。
主题 数据建模 我还是一次性将一些理论的知识整理完呗,大家可以选择性地看看就好,后续会找一些实例来练练。 一、分类与预测 分类与预测是预测问题的2种主要实现类型。分类指的是预测分类情况(离散属性),而预测则是建立连续值函数模型,预测给定自变量对应的因变量的值。 1. 常用预测与分类算法 1)回归分析 确定预测属性(数值型)与其他变量间相互依赖的定量关系最常用的统计学方法,包括线性回归、非线性回归、logistic回归、岭回归、主成分回归、偏最小二乘回归。 2)决策树 决策树采用自顶而下的递归方式,
一、问题描述 所谓“第(前)k大数问题”指的是在长度为n(n>=k)的乱序数组中S找出从大到小顺序的第(前)k个数的问题。 第K大问题可以是现实问题,譬如竞价排名中的第K个排名,或者多个出价者中的第K大价格等等。 ---- 二、解法归纳 解法1: 我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*logn + k)。 很好理解,利用快排对所有元素进行排序,然后找到第K个元素即可。 解法2: 利用选择排序或交互排序,K次选择后即可得到第k大的数。总的时间复杂度为
上一节,我们一起学习了表示复杂度的几个符号,我们说,通常使用大O来表示算法的复杂度,不仅合理,而且书写方便。
领取专属 10元无门槛券
手把手带您无忧上云