核心思想 蚁群觅食过程中,每只蚂蚁在所走过的路径上均会释放出一种信息素,该信息素随时间的推移逐渐挥发。因此,每条路径上的信息素同时存在正负反馈两种机制。...因此,在理想情况下,整个蚁群将逐渐向信息素浓度最高的路径(即最短路径)进行转移。...self.path.append(B) self.path[-1], self.path[-2] = self.path[-2], self.path[-1] # 构建“蚁群算法...beta=5, rho=0.1, Q=1): self.ants_num = ant_num # 蚂蚁个数 self.maxIter = maxIter # 蚁群最大迭代次数...# 记录每次迭代后所有蚂蚁的路径长度信息 self.best_path = np.zeros(self.maxIter) # 记录每次迭代后整个蚁群的
算法背景及原理 蚁群算法是一种智能优化算法,在TSP商旅问题上得到广泛使用。蚁群算法于1992年由Marco Dorigo首次提出,该算法来源于蚂蚁觅食行为。...算法应用 蚁群算法被应用于数据分析、机器人协作求解、电力、通信、水利、交通、建筑等领域。...该算法最初是用来解决TSP问题,但是经过多年发展,已经逐渐渗透到其他领域中,例如车辆调度问题、图着色问题等,其中,最成功的是在组合优化问题中的应用。...新增信息素含量根据不同规则可以将蚁群算法分为以下三种模型,分别是蚁周模型、蚁量模型以及蚁密模型,具体大家可根据需要进行学习。...(4)判断是否达到终止条件 蚁群算法的终止条件是:判断是否达到最大迭代次数。 算法流程图如下图所示。
本文我们一起学下常用于路径优化的蚁群算法,主要内容如下: 蚁群算法简介 蚁群算法原理 蚁群算法实例 1.蚁群算法简介 如何寻找一条合适的路径,几乎是一个永恒的话题。每个人、每天都会遇到。...在数字时代背景下,蚁群算法在网络路由中的应用受到越来越多学者的关注,并提出了一些新的基于蚂蚁算法的路由算法。 ?...2.蚁群算法原理 蚁群算法是从自然界中真实蚂蚁觅食的群体行为得到启发而提出的,其很多观点都来源于真实蚁群,因此算法中所定义的人工蚂蚁与真实蚂蚁存在一定的辩证关系。...算法特点 与其他优化算法相比,蚁群算法具有以下几个特点: 采用正反馈机制,使得搜索过程不断收敛,最终逼近最优解。...至此,我们从蚁群算法的简介,原理以及实例方面对蚁群算法进行了详细的阐述,希望对大家有所帮助。 ♥点个赞再走呗♥
蚁群算法的基本原理 蚁群算法(Ant Colony Optimization, ACO)是通过模拟蚂蚁觅食的原理,设计出的一种群集智能算法。...蚁群算法的重要原则 避障原则,蚂蚁不能穿过障碍物。 播发信息素规则,蚁群在刚离开窝或者事物附近播散的信息素最多。 范围,蚂蚁只能感知到自己周围的环境。
蚂蚁系统 最早的蚁群算法,其在小规模TSP中性能尚可,再大规模TSP问题中性能下降,容易停滞。...精英蚂蚁系统 对算法每次循环之后给予最优路径额外的信息素。...最大-最小蚂蚁系统 目前解决TSP问题最好的蚁群算法之一,在蚂蚁系统的基础上进行了如下更改: 信息素被限制在[τmin , τmax]。 信息素的初始值被设定为取其上界。
蚁群算法基本思想 蚁群算法的基本原理来源于自然界中蚂蚁觅食的最短路径问题。...在自然界中,蚁群的这种寻找路径的过程表现为一种正反馈过程,“蚁群算法”就是模仿生物学蚂蚁群觅食寻找最优路径原理衍生出来的。...蚁群算法数学模型 应该说前面介绍的蚁群算法只是一种算法思想,要是想真正应用该算法,还需要针对一个特定问题, 建立相应的数学模型。...现仍以经典的TSP问题为例,来进一步阐述如何基于蚁群算法来求解实际问题。...蚁群算法流程 用蚁群算法求解TSP问题的算法流程如下图所示,具体每步的含义如下: 步骤1:对相关参数进行初始化,包括蚁初始化群规模、信息素因子、启发函数因子、信息素、挥发因子、信息素常数、最大迭代次数等
蚁群算法可以用于路径规划,在本例中,地形矩阵用0表示无障碍物、用1表示有障碍物,机器人从1x1处走到10x10处,使用蚁群算法找最短路径。...cn,D); % 一直前进,直到到达食物或者陷入死胡同 while point ~= E &&~isempty(nextlist) % 轮盘赌算法取下一点
蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。...也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。...蚁群算法的特点: 1)蚁群算法是一种自组织的算法。...相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖子初始路线的选择,而且在搜索过程中不需要进行人工的调整。...其次,蚁群算法的参数数目少,设置简单,易于蚁群算法应用到其它组合优化问题的求解。
(一)蚁群算法的由来 蚁群算法(ant colony optimization)最早是由Marco Dorigo等人在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找食物时,通过分泌一种称为信息素的生物激素交流觅食信息从而能快速的找到目标...,据此提出了基于信息正反馈原理的蚁群算法。...蚁群算法的基本思想来源于自然界蚂蚁觅食的最短路径原理,根据昆虫科学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并在周围环境发生变化后,自适应地搜索新的最佳路径...(二)蚁群算法能做什么 蚁群算法根据模拟蚂蚁寻找食物的最短路径行为来设计的仿生算法,因此一般而言,蚁群算法用来解决最短路径问题,并真的在旅行商问题(TSP,一个寻找最短路径的问题)上取得了比较好的成效。...(三)蚁群算法实现 优化的 函数为F(x,y)= -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6) MATLAB clear clc Ant = 300
Colorni 通过模拟蚁群觅食行为提出了一种基于群体的模拟进化算法——蚁群优化。...以蚁群算法为代表的群体智能已成为当今分布式人工智能研究的一个热点,很多源于蜂群和蚁群模型设计的算法已越来越多地被用于企业的运转模式的研究。...人们发如今某些方面採用蚁群模型进行聚类更加接近实际的聚类问题。 将蚁群算法用于聚类分析,灵感源于蚂蚁堆积他们的尸体和分类他们的幼体。...将蚁群算法运用于数据发掘还存在一些问题,须要进一步研究: (1)怎样将现实的挖掘任务转换成蚁群求解的问题空间,并用适当的方式表达。...(4)蚁群算法的搜索时间较长。怎样将蚁群算法与遗传算法、免疫算法等优化算法相结合。改善和提高算法性能。以适应海量数据库的知识发现。
前几篇解释了一些智能优化算法,今天才想到还有一个重要的给忘了,,言归正传,蚁群算法也是一种生物仿生算法,它是通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法。...这样其实在一定程度上会导致较长的搜索时间和容易出现停滞的现象,毕竟每次迭代时路径上的信息素增量都是有规律的 迭代终止条件的选择,这里不要误将遍历完所有n个城市为迭代终止而是应该看成下一次迭代的起点,所以蚁群算法的迭代终止条件只是最大循环次数...算法步骤 ?...禁忌表此时的长度为n已满 选择下一个蚂蚁,设置当前蚂蚁k的索引号k=k+1 重复四步,直到周游(三、四步可以并行执行,即其他蚂蚁也可以同时前进) 所有蚂蚁都周游完后,即k>m后,记录本次最短的路线长度(即信息素最浓的周游遍历长度...) 根据公式更新下一次迭代的每条路径的信息量 清空每只蚂蚁的禁忌表,更新迭代,直到当且迭代次数Nc大于最大循环次数G 此时最短的路线长度一定是信息素最浓的周游遍历长度 ?
算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。...自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。...◆是一种全局搜索算法,能够有效地避免局部最优。 回复数字或算法名称即可查看相关文章: 1. 决策树算法之一C4.5 2. 数据挖掘之Apriori算法 3. 网页排序算法之PageRank 4....分类算法之朴素贝叶斯分类 5. 遗传算法如何模拟大自然的进化? 6. 没有公式如何看懂EM算法? 7. Python实现KNN算法 8. 基础聚类算法:K-means算法 9....集成学习算法----Adaboost 10. 分类回归树算法---CART 11. EAG多目标进化算法 12. 蚁群算法(独辟蹊径的进化算法) 免责声明:本文系网络转载。版权归原作者所有。
算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。...自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。...(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。 3. 信息素及转移概率的计算: ? ? ? ? 4. 算法步骤 ?...算法特点: ◆是一种基于多主体的智能算法,不是单个蚂蚁行动,而是多个蚂蚁同时搜索,具有分布式的协同优化机制。 ◆本质上属于随机搜索算法(概率算法),具有概率搜索的特征。...◆是一种全局搜索算法,能够有效地避免局部最优。 免责声明:本文系网络转载。版权归原作者所有。如涉及版权,请联系删除!
下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处。
蚁群优化算法在解决哪些具体组合优化问题方面表现最为突出? 蚁群优化算法在解决组合优化问题方面表现最为突出的领域包括旅行商问题(TSP)、车辆路径问题(VRP)和最大团问题等。...此外,蚁群算法还被成功应用于求解最大团和最大割两个经典的NP-完全组合优化问题。...混沌改进蚁群算法:基于混沌理论的改进蚁群算法可以在一定程度上提高收敛速度,尽管其效果可能因具体问题而异。...这些应用展示了蚁群算法在解决复杂优化问题中的潜力。 在参数优化和智能融合方面,研究者们对蚁群算法进行了多项改进。...蚁群优化算法被广泛应用于机器人路径规划中,特别是在ROS平台上的多种群自适应蚁群算法,显示出较传统方法更高的效率和性能。 分布式蚁群优化算法的研究也取得了一些突破。
使用蚁群算法解决旅行商问题步骤如下: 初始化参数。 将蚂蚁随机的放在城市上。 蚂蚁各自按概率选择下一座城市。 蚂蚁完成各自的周游。 更新信息素,进行下一次迭代。
什么是蚁群算法? 蚁群算法就是模拟蚂蚁寻找食物的过程,它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。...本文使用蚁群算法来解决分布式环境下的负载均衡调度问题。...本文我们就采用蚁群算法来解决这一问题。 数学建模 在开始之前,我们首先需要将“负载均衡调度”这个问题进行数学建模,量化各项指标,并映射到蚁群算法中。...OK,准备工作完成,下面来看蚁群算法的实现。...蚁群算法 /** * 蚁群算法 */ function aca() { // 初始化任务执行时间矩阵 initTimeMatrix(tasks, nodes); // 初始化信息素矩阵
蚁群算法最早是由Marco Dorigo等人在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找食物时,通过分泌一种称为信息素的生物激素交流觅食信息从而能快速的找到目标,据此提出了基于信息正反馈原理的蚁群算法...蚁群算法根据模拟蚂蚁寻找食物的最短路径行为来设计的仿生算法,因此一般而言,蚁群算法用来解决最短路径问题,并真的在旅行商问题(TSP,一个寻找最短路径的问题)上取得了比较好的成效。...具体概述及通用MATLAB代码请见: https://www.omegaxyz.com/2018/01/26/aco/ 下面是蚁群算法机器人最短路径规划问题的MATLAB代码 (1代表障碍物) MATLAB
functionsants = edgeselection(ants, tau, P0, lamda, xl, xu, yl, yu) % 状态转移 + 约束边界 % ants input 蚁群...input x最大值 % yl input y最小值 % yu input y最大值 % sants output 输出蚁群...calObjFun(sants); tindex= find(sobjvalue < objvalue); sants(tindex,:) = ants(tindex, :); 一些其他函数 初始化蚁群函数...: functionants = initant(num, xl, xu, yl, yu) % 初始化蚁群 % num input 蚂蚁数量 % xl input x最小...% xu input x最大 % yl input y最小 % yu input y最大 % ants output 蚁群 ants= rand
这里使用蚁群算法求函数的最大值,函数是: f = -(x.^4 + 3*y.^4 - 0.2*cos(3*pi*x) - 0.4*cos(4*pi*y) + 0.6); 步骤如下: 初始化参数。...初始化蚁群,第一代蚁群随机分布在可行域中。 初始化信息素,第一代信息素采用第一代蚁群的函数值表示,函数值越大,信息素越多。 状态转移,计算状态转移概率,根据状态转移概率进行局部搜索或全局搜索。...选择,根据目标函数值在原始蚁群和状态转移之后的蚁群之间进行选择。 更新信息素,tau = (1 – Rou) .* tau + calObjFun(ants)。...对选择后的蚁群重复进行状态转移、约束边界和更新信息素3步,直至结束。...,红色为最后一代蚁群: ?
领取专属 10元无门槛券
手把手带您无忧上云