如果有一个关键码的集合K = { k1,k2 ,k3 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki <=k(2i+1 )且 ki<=k(2i+2) ( ki >=k(2i+1 )且 ki>=k(2i+2) ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
本文的学习任务:关于堆的实现以及相关的基础操作,包括向上调整算法和向下调整算法,同时利用该算法解决常见的topk问题,之后再对两种算法的时间复杂度进行分析,加深理解。
图解如下: 以int a[] = {4,7,8,5,6,2,1,9}为例 1.建堆
一、堆 1.概念 堆的物理结构(我们能看到的)是一个数组 堆的逻辑结构(我们想象出来的)是一个完全二叉树 2.特性 1.结构性:用数组表示完全二叉树 2.有序性: 任一结点的关键字是其子树所有结点的最大值(最小值) 而拥有最大值在顶叫做 大堆 拥有最小值在顶叫做 小堆 3. 父子结点 因为都是由数组表示的完全二叉树 而数组对应下标 左孩子下标 =父亲节点下标*2+1 右孩子下标 =父亲节点下标*2+2 二、向下调整算法 1.概念 向下调整算法 以小堆为例, 当满足左子树与右子树都
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆(若不清楚什么是堆,可以看我前面的文章,有详细阐述)来进行选择数据,通过向下调整算法,从第一个非叶子结点开始在局部先创建出大堆(或小堆),然后父亲结点不断往上走,直到整棵树都建成一个堆。 需要注意的是排升序要建大堆,排降序建小堆。( 然后不断交换根节点和最后一个节点的值,交换完后节点的数目减1(因为最后一个节点已经是它应该在的位置了,不用再参与建堆),再从根节点向下建堆(除最后一个节点其它节点又会建成一个堆) ) 。 然后重复红色括号中的过程,堆排序就完成了。
选择排序可以用扑克牌理解,眼睛看一遍所有牌,选择最小的放在最左边。然后略过刚才排完的那张,继续进行至扑克牌有序。这样一次一次的挑选,思路很顺畅。总结为: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
如果有一个数字集合,并把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,且在逻辑结构(即二叉树)中,如果每个父亲节点都大于它的孩子节点那么此堆可以称为大堆;那么如果每个父亲节点都小于它的孩子节点那么此堆可以称为小堆。 堆的性质:
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。 将元素存储到数组中后,可以根据之前写的二叉树文章中的性质 对树进行还原。 假设i为节点在数组中的下标则有 1. 如果 i 为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2 2. 如果2 * i + 1 小于节点个数,则节点i存在左孩子下标,且为2 * i + 1,否则没有左孩子;如果2 * i + 2小于节点个数,则节点i存在右孩子下标,且为2 * i + 2,否则没有右孩子。
优先级队列是一种特殊的队列,其中的元素都被赋予了优先级。元素的优先级决定了它们在队列中的顺序。在优先级队列中,元素按照优先级从高到低的顺序出队列。
F(h) = 2^0*2^1+2^1*2^2+...+2^(h-2)*2^(h-1)
自从写完了上一篇:程序员必备数据结构:栈之后,就一直盘算着写一篇“堆”,今天动手了。
开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第4天,点击查看活动详情 @TOC
总的来说,堆是一种高效的数据结构,它在实现优先队列、堆排序等场景中发挥着重要作用。
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。 最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
堆(heap)是计算机科学中一类特殊的数据结构的统称,堆通常是一个可以被看做一棵树的数组对象,因此堆常常是通过数组的形式来实现的,不过堆在实现时必须遵守两个原则
https://blog.csdn.net/weixin_72357342/article/details/134908529?spm=1001.2014.3001.5502
树是一种非线性的数据结构,它是一种由有限个结点组成的具有层状结构的集合,把它叫做树是因为它看起来像一颗倒挂起来的树,叶子朝下,根root朝上。
我们把二叉堆的根节点称之为堆顶。根据二叉堆的特性,堆顶要嘛是整个堆中的最大元素,要嘛是最小元素。
因此,堆排序在最坏的情况下,其时间复杂度也为O(nlogn),这是相对快排,堆排的最大优点.
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》 《高效算法》
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 有一个特殊的结点,称为根结点,根节点没有前驱结点。除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
栈不在是一个容器,而是一个容器适配器 , stack的模板中第二个deque暂时不知道干什么的,后面会说
开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第3天,点击查看活动详情 @TOC
给你一个顺序表或数组(一串数据),通常来说建堆有两种方法一种堆向上调整算法,一种堆向下调整算法建堆也就是筛选法建堆。
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。
我们在说 大小根堆 时,只说了 根节点比孩子节点大,没有说 左右孩子节点谁比谁大、谁比谁小.
那么我们可以把14默认为是一个符合前提的堆,然后从12往后不断向数组中插入元素,并不断向上调整,直至把整个数组元素全部插完,即完成堆的建立.
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
这里排序无非就是升序和降序,那么,之前用的冒泡排序时间复杂度是很高的,所以这次来了解一个更加高效率的。
文心一言 VS 讯飞星火 VS chatgpt (62)-- 算法导论6.5 1题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大
这里我们介绍一种特殊的二叉树:二叉查找树(binary search tree) 。光看名字就可以知道,这种二叉树的主要作用就是进行查找 操作。
节点的度:一个节点含有的子树的个数。 叶子节点/终端节点:度为0的节点。 分支节点/非终端节点:度不为0的节点。 父节点/双亲节点:含有至少一个子节点的节点。 子节点:一个节点含有的子树的根节点,称为该节点的子节点。 兄弟节点:具有相同父节点的节点,互称为兄弟节点。 树的度:一棵树中最大节点的度。 节点的层次:从跟开始定义,根为第1层,根的子节点为第二层,…,以此类推。 数的高度或深度:树中节点的最大层次。 堂兄弟节点:父节点在同一层的节点。 节点的祖先:从根到该节点所经分支上的所有节点。 子孙:以某一节点为根节点的子树中所有节点都是该节点的子孙。 森林:一颗及一颗以上的树组成的集合。
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
堆是一种特殊的树形数据结构,具有完全二叉树的特性。在堆中,父节点的值总是大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆通常用于实现优先队列,其中每个元素都有一个优先级,优先级最高的元素总是位于堆的根节点。堆的插入和删除操作的时间复杂度都是O(log n),因此堆是一种高效的数据结构。此外,堆还可以用于实现内存管理,例如垃圾回收和内存分配等。
1. 仿函数实际就是一个类,这里类实例化出来的对象叫做函数对象,下面命名空间wyn中的两个仿函数就分别是两个类,在使用时直接用类进行实例化对象,然后让对象调用()的运算符重载,这样我们看到的调用形式就非常像普通的函数调用,但实际上这里并不是函数调用,而是仿函数实例化出来的对象调用了自己的operator()重载成员函数。
把所有的元素按照完全二叉树的形式储存在一维数组中,如果该二叉树满足父节点小于等于子节点,叫做小堆;如果该二叉树满足父节点大于等于子节点,叫做大堆。
注意第二个循环条件:是 child > 0,为什么不是 parent >=0 呢?
文心一言 VS 讯飞星火 VS chatgpt (57)-- 算法导论6.4 1题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 TOP-K问题是数据挖掘和信息检索中的一个重要问题。
这两种方案呢其实都可以,但在这里建议大家选择从1开始。 为什么呢? 因为如果我们认为根节点的层次是0,那要表示空树就是-1了。 而如果从1开始,那空树的层次就是0,空树是0 是不是好像更符合我们正常的逻辑啊。 当然只是建议,两种都可以。
![在这里插入图片描述](https://img-blog.csdnimg.cn/b9733adc7ec9467cb835499ec469cdac.png
顺序结构指的是利用数组来存储,一般只适用于表示完全二叉树,原因如上图,存储不完全二叉树会造成空间上的浪费,有的人又会问,为什么图中空的位置不能存储呢??原因是我们需要根据数组的下标关系才能访问到对应的节点!!有以下两个下标关系公式:
堆排序是一种高效的排序算法,基于二叉堆数据结构实现。它具有稳定性、时间复杂度为O(nlogn)和空间复杂度为O(1)的特点。
前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。 引入堆 之前我们提到过堆,那里,堆指的是内存中的区域,保存动态分配的对象,与栈相对应。这里的堆是一种数据结构,与内存区域和分配无关。 堆是什么结构呢?这个我们待会再细看。我们先来说明,堆有什么用?为什么要介绍它? 堆可以非常高效方便的解决很多问题,比如说: 优先级队列
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。 对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下: 1.用数据集合中前K个元素来建堆
我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
领取专属 10元无门槛券
手把手带您无忧上云