首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Task05 图像分割/二值化

    该部分的学习内容是对经典的阈值分割算法进行回顾,图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。

    02

    手背静脉识别的图像处理算法

    手背静脉识别技术作为一种全新的特征识别技术,相比于传统的生物识别技术(如指纹识别)具有许多明显的优势,然而对于该技术的研究尚处于刚刚起步阶段,使用计算机来直接进行静脉识别与身份匹配仍然较为困难,为了方便后续特征识别,提高静脉识别的准确度和优越性,有必要对获取的静脉图像进行一系列处理,得到静脉的骨架结构。 题目主要要求为: 1.对采集图像进行背景去除,取得手背部分; 2.计算采集手背的质心并提取手背有效区域; 3.提取手背静脉走势; 4.对提取的静脉进行细化处理,去除毛刺; 5.改进算法,提高程序的通用性和适普性; 6.在图像分割上尝试不同的方法,并比较结果的好坏。

    04

    Python3 机器学习简明教程

    1 机器学习介绍     1.1 什么是机器学习     1.2 机器学习的应用     1.3 机器学习基本流程与工作环节         1.3.1 数据采集与标记         1.3.2 数据清洗         1.3.3 特征选择         1.3.4 模型选择         1.3.5 训练和测试         1.3.6 模型使用     1.4 机器学习算法一览 2 Python 3 机器学习软件包     2.1 多种机器学习编程语言比较     2.2 开发环境 Anaconda 搭建         2.2.1 Windows         2.2.2 macOS         2.2.3 Linux     2.3 Jupyter Notebook 介绍     2.4 Spyder 介绍     2.5 Numpy 介绍         2.5.1 Numpy 数组         2.5.2 Numpy 运算         2.5.3 Numpy Cheat Sheet     2.6 Pandas 介绍         2.6.1 十分钟入门 pandas         2.6.2 Pandas Cheat Sheet     2.7 Matplotilb 介绍         2.7.1 Pyplot 教程         2.7.2 plots 示例         2.7.3 Matplotilb Cheat Sheet     2.8 scikit-learn 介绍         2.8.1 scikit-learn 教程         2.8.2 scikit-learn 接口         2.8.3 scikit-learn Cheat Sheet     2.9 数据预处理         2.9.1 导入数据集         2.9.2 缺失数据         2.9.3 分类数据         2.9.4 数据划分         2.9.5 特征缩放         2.9.6 数据预处理模板 3 回归     3.1 简单线性回归         3.1.1 算法原理         3.1.2 预测函数         3.1.3 成本函数         3.1.4 回归模板     3.2 多元线性回归     3.3 多项式回归         3.3.1 案例:预测员工薪水     3.4 正则化         3.4.1 岭回归         3.4.2 Lasso 回归     3.5 评估回归模型的表现         3.5.1 R平方         3.5.2 广义R平方         3.5.3 回归模型性能评价及选择         3.5.4 回归模型系数的含义 4 分类     4.1 逻辑回归         4.1.1 算法原理         4.1.2 多元分类         4.1.3 分类代码模板         4.1.4 分类模板     4.2 k-近邻         4.2.1 算法原理         4.2.2 变种     4.3 支持向量机         4.3.1 算法原理         4.3.2 二分类线性可分         4.3.3 二分类线性不可分支持         4.3.4 多分类支持向量机         4.3.5 Kernel SVM - 原理         4.3.6 高维投射         4.3.7 核技巧         4.3.8 核函数的类型     4.4 决策树         4.4.1 算法原理         4.4.2 剪枝与控制过拟合         4.4.3 信息增益         4.4.4 最大熵与EM算法 5 聚类     5.1 扁平聚类         5.1.1 k 均值         5.1.2 k-medoids     5.2 层次聚类         5.2.1 Single-Linkage         5.2.2 Complete-Linkage 6 关联规则     6.1 关联规则学习     6.2 先验算法Apriori     6.3 FP Growth 7 降维     7.1 PCA(主成分分析)     7.2 核 PCA     7.3 等距特征映射IsoMap 8 强化学习     8.1 置信区间上界算法         8.1.1 多臂老虎机问题

    03

    2018Medical Segmentation Decathlon——10项医学分割任务之task3肝脏肿瘤分割

    随着机器学习的最新进展,语义分割算法变得越来越通用,并且可以转化为看不见的任务。医学成像领域的许多关键算法通常在少数任务上得到验证,限制了我们对所提出贡献的普遍性的理解。本着AutoML的精神,一个在许多任务上开箱即用的模型将对医疗保健产生巨大影响。医学成像领域也缺少一个完全开源和全面的通用算法验证和测试基准,涵盖大范围的挑战,例如:小数据、不平衡标签、大范围对象尺度、多类标签,以及多模态成像等。这个挑战和数据集旨在通过针对几个高度不同的任务的大型医学成像数据集的开源,以及通过标准化分析和验证过程来提供此类资源。

    02

    图像分割综述

    这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。 1.基于阈值的分割方法 阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。 阈值法特别适用于目标和背景占据不同灰度级范围的图。 图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。

    04

    【分享送书】畅快!5000字通俗讲透决策树基本原理

    在当今这个人工智能时代,似乎人人都或多或少听过机器学习算法;而在众多机器学习算法中,决策树则无疑是最重要的经典算法之一。这里,称其最重要的经典算法是因为以此为基础,诞生了一大批集成算法,包括Random Forest、Adaboost、GBDT、xgboost,lightgbm,其中xgboost和lightgbm更是当先炙手可热的大赛算法;而又称其为之一,则是出于严谨和低调。实际上,决策树算法也是个人最喜爱的算法之一(另一个是Naive Bayes),不仅出于其算法思想直观易懂(相较于SVM而言,简直好太多),更在于其较好的效果和巧妙的设计。似乎每个算法从业人员都会开一讲决策树专题,那么今天本文也来达成这一目标。

    03

    GBDT分解形式理解,整理中2018-5-10

    GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。 GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

    05
    领券