为了简单起见, 我们在这里提出乘零的简单Dropout算法,但是它被简单地修改后,可以与从网络中 移除单元的其他操作一起工作。...Dropout的目标是在指数 级数量的神经网络上近似这个过程。具体来说,训练中使用Dropout,我们使用基 于minibatch的学习算法和小的步长,如梯度下降等。...取而代之的是,可能的子网络的一小部分训练单个步骤,参数共享导致剩余的子网络能有好的参数设定。这些是仅有的区别。除了这些,Dropout与Bagging算法一样。...不出意外的话,使 用Dropout时最佳验证集的误差会低很多,但这是以更大的模型和更多训练算法的迭 代次数为代价换来的。对于非常大的数据集,正则化带来的泛化误差减少得很小。...另一种深度学习算法——batch normalization,在训练时向隐藏单元引入加性和 乘性噪声重参数化模型。