首先,把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)
基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。
正整数A和正整数B 的最小公倍数是指 能被A和B整除的最小的正整数值,设计一个算法,求输入A和B的最小公倍数。
最小公倍数是指能同时将两数整除的最小倍数,而最大公约数是则是能被两数同时整除的最小因数。最小公倍数有个特点,就是最小为两数中的较大值,最大为两数的乘积;最小公倍数则是最小为1,最大为两数中较小值(如果两数相同,那么最大公约数、最小公倍数是它们本身)🎉🎉🎉
本文采用CC BY-NC-SA 3.0 Unported协议进行许可,转载请保留此文章链接
利用格式输入语句将输入的两个数分别赋给 a 和 b,然后判断 a 和 b 的关系,如果 a 小于 b,则利用中间变量 t 将其互换。再利用辗转相除法求出最大公约数,进而求出最小公倍数。最后用格式输出语句将其输出。
在计算机科学中,求解两个或多个数的最大公因数(Greatest Common Divisor,简称GCD)和最小公倍数(Least Common Multiple,简称LCM)是数学计算中的基本问题。C语言作为一种广泛应用于科学计算和工程领域的编程语言,自然也可以用来求解这些问题。本文将详细介绍C语言中求最大公因数和最小公倍数的方法,并附上代码示例。
源码:https://github.com/fuzhengwei/java-algorithms
在线练习: http://noi.openjudge.cn/ https://www.luogu.com.cn/
最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两数的最大公约数 ③ 若c≠0,则a=b,b=c,再回去执行① 例如求27和15的最大公约数过程为: 27÷15 余1215÷12余312÷3余0因此,3即为
输入格式 由空格分开的三个整数。 输出格式 一个实数,保留两位小数。 样例输入 3 4 5 样例输出 6.00 数据规模和约定 输入的三条边一定能构成三角形,不用进行判定。a,b,c小于1000
小张是软件项目经理,他带领3个开发组。工期紧,今天都在加班。为鼓舞士气,小张打算给每个组发一袋核桃(据传言核桃能补脑),他的要求是:
最小公倍数在通分的时候会使用到,上文百度解析中可以看到a与b之间的最小公倍数关系。那么我们这里需要具体的举例子看看:
设有两整数a和b: ① a%b得余数c ② 若c==0,则b即为两数的最大公约数 ③ 若c!=0,则a=b,b=c,再回去执行①。
🚩write in front🚩 🔎大家好,我是謓泽,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 🏅2021年度博客之星物联网与嵌入式开发TOP5~2021博客之星Top100~阿里云专家 ^ 星级博主~掘金⇿InfoQ创作者~周榜77»总榜1766🏅 🆔本文由 謓泽 原创 CSDN首发 🙉 如需转载还请通知⚠ 📝个人主页-謓泽的博客_CSDN博客💬 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝 📣系列专栏-【C】题目_謓泽的博客-CSDN博客🎓 ✉️我们并非登上我们所选择
最小公倍数即能同时被数字m和数字n整除的最小整数,利用欧几里得公式进行求解,先算出最大公约数,然后求出最小公倍数;
首先我们要考虑,什么是最大公约数,在数学中的定义是:最小公倍数是指两个或多个整数共有倍数中最小的一个。为了求出两个数的最下公倍数,可以采用枚举试错法。
感谢 @杉木杉林 反馈文章《C语言求两数最大公约数和最小公倍数》中的错误,如下图所示:
好的,我们可以根据上图的思考过程和百度百科的介绍了解,知道了求最大公约数的过程。
解题思路:最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个;最小公倍数是指两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。最小公倍数=两整数的乘积÷最大公约数 , 所以怎么求最大公约数是关键。
小栖有一个区间[a,b],他准备从中取三个数,他想知道如何取才能使得它们的最小公倍数最大 请直接告诉小栖最小公倍数是多少。
辗转相除法又称为欧几里德算法。这个方法大家已经都已经在数学上学过了。具体的步骤就是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后的除数就是这两个数的最大公约数。举个例子就是:比如两个数字,x=453,y=36;
两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。比如10和25,25除以10商2余5,那么10和25的最大公约数,等同于10和5的最大公约数。
import java.util.Scanner; /* * 标题:求最大公约数和最小公倍数 * 算法思想:最大公约数和最小公倍数(递归实现,效率较高) * 最小公倍数:gcd(a,b)欧几里得定理(辗转相除法) * 最大公约数:a和b分别与最小公倍数的商的乘积,化简后为 a*b/gcd(a,b) */ public class Main { static Scanner sc = new Scanner(System.in); static int x = sc.nextInt();
最小公倍数定义: 两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。
Input 输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数。
1.【更相减损法】=【等值算法】,避免了取模运算,但是算法性能不稳定,最坏时间复杂度为O(max(a, b)))。
采用枚举法求解两个数的最大公约数是我们最常使用到的方法,两个整数的最大公约数为a,则a应该是大于等于1,小于等于这两个数的最小数的。因此我们可以在该范围内对可能的数进行枚举即可。
首先来回忆一下什么叫最大公约数:指两个或多个整数共有约数中最大的一个。比如60和24,60的约数有[1,2,3,4,5,6,10,12,15,20,30,60],24的约数有[1,2,3,4,6,8,12,24],他们共同的约数有[1,2,3,4,6,12],共同约数种最大的是12,所以最大公约数就是12。
辗转相除法又名欧几里德算法,是求最大公约数的一种方法。它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
2020-09-22:已知两个数的最大公约数和最小公倍数,并且这两个数不能是最大公约数和最小公倍数本身。如何判断这两个数是否存在?
设两数为a和b(a>b),用a除以b,得a÷b=q……r,若r=0 ,则最大公约数为b;若r≠0 ,则再用b÷r,得b÷r=q……r’,若r’=0,则最大公约数为r’,若r’≠0,则继续用r÷r’……直到能够整除为止,此时的除数即为最大公约数。
什么是最大公约数呢?定义如下: 如果数 a 能被数 b 整除,a 就叫做 b 的倍数,b 就叫做 a 的约数。几个整数中公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
自我介绍:一个脑子不好的大一学生,c语言接触还没到半年,若涉及到效率等问题,各位都可以在评论区提出见解,谢谢啦。
import java.util.Scanner; /* * 输入两个数,求这两个数的最大公约数和最小公倍数 * 算法思想:(非递归)最大公约数和最小公倍数 * 最大公约数:for循环从二者最小的数到1遍历,能共同 被整除的最大整数即为最大公约数 * 最小公倍数:最大公约数*两个数与最大公约数的商 */ public class Main { static Scanner sc = new Scanner(System.in); static int a,b;
又名欧几里德算法(Euclidean algorithm),它是已知最古老的算法, 其可追溯至公元前300年前。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/145272.html原文链接:https://javaforall.cn
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/145832.html原文链接:https://javaforall.cn
问题引入 欧几里得算法又称辗转相除法,是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。 代码示例 C++ 辗转相除法: #include <iostream> using namespace std; int main() { int r,m,n,min,max,product; //min代表最小公倍数,max代表最大公倍数; cout<<"请输入两个正整数:"; cin>>m>>n;
📋前言📋 💝博客:【红目香薰的博客_CSDN博客-计算机理论,2022年蓝桥杯,MySQL领域博主】💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝专栏地址:【https://blog.csdn.net/feng8403000/category_11958599.html】💝 ---- 为了帮助很多想搞算法但又害怕自己搞不定的孩子们,老师付准备了200个入门的逻辑练习题,在这200个逻辑练习题下可以加强你们的基础算法能力,以次
利用辗转相除法、穷举法、更相减损术、Stein算法求出两个数的最大公约数或者/和最小公倍数。
辗转相除法(欧几里得算法)算是求最大公约数最简单高效的算法了,这几行代码用最简洁的方式写了这个算法,值得牢牢记住:
-欢迎 这篇文章讨论了数论中每个程序员都应该知道的几个重要概念。本文的内容既不是对数论的入门介绍,也不是针对数论中任何特定算法的讨论,而只是想要做为数论的一篇参考。如果读者想要获取关于数论的更多细节,文中也提供了一些外部的参考文献(大多数来自于 Wikipedia 和 Wolfram )。 0、皮亚诺公理 整个算术规则都是建立在 5 个基本公理基础之上的,这 5 个基本公理被称为皮亚诺公理。皮亚诺公理定义了自然数所具有的特性,具体如下: (1)0是自然数; (2)每个自然数都有一个后续自然数; (3)0不是
问题描述 已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
这道理放在编程上也一并受用。在编程方面有着天赋异禀的人毕竟是少数,我们大多数人想要从编程小白进阶到高手,需要经历的是日积月累的学习,那么如何学习呢?当然是每天都练习一道题目!!
求两个数的最大公约数:“辗转相除法”: 设两数为a和b(a>b),用a除以b,得a÷b=商…余数,若余数为0 ,则最大公约数为b;若余数不为0 ,则再用b÷余数, 得b÷余数=商1…余数1,若余数1=0,则最大公约数为余数,若余数1不为0,继续让商÷余数n,一直到能够余数为零 这时的除数即最大公约数。 求两个数的最小公倍数: 最小公倍数=两数的乘积÷最大公约数
2.初始化变量 l 为0,变量 r 为 (n * min(a, b)),其中 min(a, b) 表示 a 和 b 中的最小值。在这个范围内通过二分查找获得第 n 个神奇数字。
最大公约数和最小公倍数的求解可以归结为求最大公约数,最小公倍数为两数乘积除以最大公约数
今天给大家分享的是一道比较基本的题,相信好多同学都会了吧 题目描述 输入两个正整数m和n,求其最大公约数和最小公倍数。 输入 两个整数 输出 最大公约数,最小公倍数 样例输入 5 7 样例输出 1 35 给大家一个提示:最大公约数和最小公倍数间有着一定的关系!!! 没有思绪的同学请到C语言网1011题查看题解,但记得一定要自己写一遍哦! 觉得自己题解写得好的朋友可以给我们留言,审核后,我们将在第二天推出你的题解,让大家看到你的学习成果! 另外,有兴趣的同学还可以加入C语言官方微信群,一起讨论C语言 通过
领取专属 10元无门槛券
手把手带您无忧上云