在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法。基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来)。基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的)。基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子。也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题。也就是说,有没有哪种方法,可以在一个点不多,一个点不少的情况下,把目标和“其他”分开。
1996 年, 美国计算机科学家 David R Karger 连同其他研究者在论文《 A new approach to the minimum cut problem》中提出了一个令人惊讶的随机算法 Karger 算法,其在理论计算机科学中非常重要,尤其适用于大规模图的近似最小割问题。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/75565373
基于边缘的分割方法是通过检测图像中的边缘来进行分割的。边缘通常表示图像中不同区域之间的分界线。在图像中,边缘通常是指图像灰度值变化的位置,如物体边缘、纹理等。
图像配准(apap)是将两张场景相关的图像进行映射,寻找其中的关系,多用在医学图像配准、图像拼接、不同摄像机的几何标定等方面,其研究也较为成熟。OpenCv中的stitching类就是使用了2007年的一篇论文(Automatic panoramic image stitching using invariant features)实现的。虽然图像配准已较为成熟,但其实其精度、鲁棒性等在某些场合仍不足够,如光线差异很大的两张图片、拍摄角度差异很大的图片等。2013年,Julio Zaragoza等人发表了一种新的图像配准算法Apap(As-Projective-As-Possible Image Stitching with Moving DLT),该算法的效果还是不错的,比opencv自带的auto-stitch效果要好。而2015年也有一篇cvpr是介绍图像配准(Non-rigid Registration of Images with Geometric and Photometric Deformation by Using Local Affine Fourier-Moment Matching),其效果貌似很牛,但没有源码,难以检验。
之前的一个学习一直在看图像分割的部分内容,基于交互的图像分割基本都是用图割的算法,全自动的图割算法也有最小生成树的改进算法。
立体匹配是三维重建系统的关键步骤,并且作为一种非接触测量方法在工业以及科研领域具有重要的应用价值。为了完成匹配工作以及获取场景的稠密视差图,可以通过构建能量函数对应立体匹配的约束条件。复杂能量函数的全局最优解通常是NP难问题。相对于其他全局优化算法相比如模拟退火、梯度下降、动态规划等,图割算法不仅精度高,收敛速度快,并且对于光照变化、弱纹理等区域的匹配效果也比其他算法好。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/75507959
刷了一天最大流的题,都快刷晕了,, 简单总结几个模型吧。 大部分内容来自学姐的PPT 拆点 一个非常有用的思想 限流 将对点的限制转化为对边的限制 点的合并 这个还没看到 最小割 最小割==最大流 一条增广路中,必有一条边满流,满流的流量即为这条增广路的流量,那么删除满流的这条边即可阻断一条增广路。删去一些边使源汇不连通即阻断所有的增广路,代价之和即为最大流。 最大流=最小割 你能想到什么? 大与小的转换 留下最多与拿走最少的转换 最大收益与最小损失的转换 选最优与不选最差的转换 什么时候转换?
图像分割(image segmentation)技术是计算机视觉领域的一个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技术相关的场景物体分割、人体前背景分割、人脸人体Parsing、三维重建等技术已经在无人驾驶、增强现实、安防监控等行业都得到广泛的应用。
Graph Cut 最常用的应用为图像前景、背景分割,本文记录其在图像去噪的应用思路。 简介 Graph Cut 的核心是设置合理的能量函数,将能量函数映射到图模型中,依照最大流最小割算法寻找节点能量最小的二分类结果。 在去噪应用中,也是类似的路数,只是框架仍在二分类中,只能解决二分类的去噪问题。 问题描述 待去噪的二值图像 Y: 图像中噪声很多,我们想要保持图像信息、同时图像尽量平滑。 假设完成去噪的图像 X,需要像 Y ,又要平滑: 如果像素数量为 n,那么总共的解空间大小为 2^n, NP
大学期间,ACM队队员必须要学好的课程有: l C/C++两种语言 l 高等数学 l 线性代数 l 数据结构 l 离散数学 l 数据库原理 l 操作系统原理 l 计算机组成原理 l 人工智能 l 编译原理 l 算法设计与分析 除此之外,我希望你们能掌握一些其它的知识,因为知识都是相互联系,触类旁通的。
图像分割(image segmentation)技术是计算机视觉领域的个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技术相关的场景物体分割、人体前背景分割、人脸人体Parsing、三维重建等技术已经在无人驾驶、增强现实、安防监控等行业都得到广泛的应用。
关于上一篇博文中提到的欧几里德分割法称之为标准的距离分离,当然接下来介绍其他的与之相关的延伸出来的聚类的方法,我称之为条件欧几里德聚类法,(是我的个人理解),这个条件的设置是可以由我们自定义的,因为除了距离检查,聚类的点还需要满足一个特殊的自定义的要求,就是以第一个点为标准作为种子点,候选其周边的点作为它的对比或者比较的对象,如果满足条件就加入到聚类的对象中,至于到底怎么翻译我也蒙了,只能这样理解了
本文讨论了一个ACM模板,用于解决图中的点连接问题。该模板使用贪心算法,可以有效地将点集分成两个集合,最小化连接两个集合所需的最短路径。文章提供了详细的代码实现和示例。同时,作者还指出,该问题可以推广到最小割问题,但需要修改算法。最后,作者提供了示例和测试用例,以展示算法的有效性和正确性。
前言 时间来到6月,又是一年高考时。 几年之前是坐在教室怀念高考,现在是上班敲着代码怀念学生时代。 正文 1、Lakes in Berland 题目链接 ** 题目大意:** 给出n行m列的cell,每个cell与其上下左右联通; cell为*表示陆地,为.表示水,n*m的cell之外是海洋; 被陆地围起来,并且没有和海洋连接的区域称为湖; 现在要求把某些cell从.改成,使得图只有k个湖;(题目给出的图,有不小于k个湖),并且修改的点最少; 输出最少的修改点数,再输出修改之后nm的cell
上一节我们简单提到了对偶问题的构造方法和对偶性的两种理解,这一节我们还会继续讨论对偶性相关的概念。我们会先介绍两个有趣的线性规划对偶问题的实际例子(本来不想花篇幅写例子的,但我觉得它们真的太有意思了!),再将对偶性推广到更加一般的优化问题进行讨论。
回到正题,首先介绍下什么是图的边连通度和点连通度。一般来说,点连通度是指对应一个图G,对于所有点集U属于V(G),也就是V(G)的子集中,使得G-U要么是一个非连通图,要么就是一个平凡图(即仅包含一个独立点的图),其中最小的集合U的大小就是图G的点连通度,有时候也直接称为图的连通度。通俗点说,就是一个图G最少要去掉多少个点会变成非连通图或者平凡图。当然对于一个完全图来说Kn来说,它的连通度就是n-1。 同理,边连通度就是对于一个非平凡图G,至少去掉多少条边才能使得该图变成非连通图。我们的问题就是,对于任意一个图,如何求该图的连通度以及边连通度?这跟最大流问题有什么联系? 简单起见,我们先说如何求一个图的边连通度lamda(G)。(基于无向图考虑) 对于图G,设u,v是图G上的两个顶点,定义r(u,v)为删除最少的边,使得u到v之间没有通路。将图G转换成一个流网络H,u为源点,v是汇点,边容量均为1,那么显然r(u,v)就是流网络的最小割,根据(二)里的介绍,其等于流网络的最大流。 但是,目前为止我们还没解决完问题,因为显然我们要求的边连通度lamda(G)是所有的点对<u,v>对应的r(u,v)中最小的那个值。这样的话我们就必须遍历所有的点对,遍历的的复杂度为O(n*n)。这显然代价太高,而事实上,我们也不必遍历所有点对。
今天给大家分享一本算法书。 一位从1998年就开始讲课的老教授Jeff Erickson,把他20年来在UIUC讲课的内容整理成了一本算法书,名字简单粗暴,就叫《算法》(Algorithms)。文末附电子版地址。 这本书在网上公布后,很快就成了国外计算机系学生讨论的热门话题,目前在Hacker News已经收获超过1000赞。 书本内容 《算法》总共有448页,,除去前言和简介部分,总共包含了12个章节的内容,主要谈到了以下一些算法: 递归、回溯、动态编程、贪心算法、基本图算法、深度优先搜索、最小生成树、
题意:你要把n个东西划分为A和C两个部分,然后有m对关系。对于第i个关系,表示两个人有关联,如果两个人同时分到A里面,那么权值增加a;如果同时分到C那么权值增加c;如果一个在C一个在A,那么权值增加a/4+c/3
假定每次执行第i行所花的时间是常量ci;对 j = 2, 3, … n, 假设tj表示对那个值 j 执行while循环测试的次数。
Graph Cut 是一种用于 n s维图像数据的边界优化和区域分割的分割技术,本文记录相关内容。 简介 Graph Cut 通过交互式的或自动的定位一个或多个代表“物体”的点以及一个或多个代表“背景”的点来进行初始化—这些点被称作种子(Seed并被用于分割的硬约束(hard constraints)。另外的软约束(soft constraints)反映了边界和/或区域信息。 原理 每个像素视作二维平面上的节点,虚拟源、目标节点 S, T,图边分为两类,虚拟节点和每个图像像素的边,每个图像像素与其
哇对偶图真的是个好东西, 昨天考NOI2010的时候前两道很快做完了, 看着t3发呆了1个多小时, 啥也想不出来. 看着网格图突然想到听说bzoj1001狼抓兔子可以用对偶图求解. 对偶图是啥我也不知道, 听说把面看成点, 连边后跑一边最短路就可以了. 但是当时想到这个突然发现自己不会建对偶图, 看时间还有一个多小时, 于是建了8种可能的图, 每一个都跑一遍spfa, 发现有一个可以过样例, 手动模拟一下觉得这种建图没错, 就交上去了. 没想到居然还对了, 哈哈NOI2010我居然290(spfa被卡了一个点), 心中狂喜, 但是一想到t1做过, t3蒙对也就不敢说什么了, 而且这是10年的题了, 时代在进步啊…
数据结构与算法 基本算法思想 动态规划 贪心算法 回溯算法 分治算法 枚举算法 算法基础 时间复杂度 空间复杂度 最大复杂度 平均复杂度 基础数据结构 数组 动态数组 树状数组 矩阵 栈与队列 栈 队列 阻塞队列 并发队列 双端队列 优先队列 堆 多级反馈队列 线性表 顺序表 链表 单链表 双向链表 循环链表 双向循环链表 跳跃表 并查集 哈希表(散列表) 散列函数 碰撞解决办法: 开放地址法 链地址法 再次哈希法 建立公共溢出区 布隆过滤器 位图 动态扩容 树 二叉树: 各种遍历,递归与非递归 二
基本上差不多,其实就是求出来了函数的一个最小值,我们看问题的时候不妨把能量二字去掉。单纯的理解为函数
算法 无源汇上下界可行流 先强制流过l的流量 从s到每个正权点连流量为l的流量 从每个负权点向t连-l的流量 如果容量为0,则不连边 有源汇上下界最大流 去掉下界 先求出可行流 再求S到T的最大流
对于每一个平面图, 都有与其相对应的对偶图. 我们假设上面的例图是图G, 与其对应的对偶图G*, 那么对于G*来说, G*上面的每一个点, 对应的是G里面的每一个面. 比如说下面就是G*.
进行了一段时间的论文学习后,现在下载了一些代码,准备从OpenCV跟matlab两个方面着手搭建自己的图像分割平台,计划耗时一个月左右的时间!
visualgo是新加坡国立大学计算机学院一位很棒的博士老师Dr. Steven Halim 在2011年写的一个可视化数据结构和计算机常用算法的开源项目,虽然现在没有维护了,但不可否认他依旧是一个很棒的网站。它最初的目的是为了帮助他的学生更好地理解算法和数据结构,但随着时间的推移,它已经成为了一个广受欢迎的在线教育工具。
GraphCut(图切)分割算法是组合图论的经典算法之一,今天我简单介绍GraphCut算法的思想并结合交互式图像分割技术来实现在MR图像上左肱骨区域的分割提取。
FTA:源自结果,从不希望发生的顶事件(上级事件)向原因方面(下级事件)做树形图分解,自上而下。
网络流的背景我就不多说了,就是在一个有向图中找出最大的流量,有意思的是,该问题的对偶问题为最小割,找到一种切分,使得图的两边的流通量最小,而且通常对偶问题是原问题的一个下界,但最小割正好等于最大流,即切割的边就是最大流中各个path饱和边的一个组合。说得可能比较含糊,这里想要了解清楚还是查阅相关资料吧。 最大流最原始最经典的解法就是FF算法,算法复杂度为O(mC),C为边的容量的总和,m为边数。而今天讲的Push-relabel算法是90年代提出的高效算法,复杂度为O(n^3),其实网络流最关键的步骤就是添
算法工程师成长计划 近年来,算法行业异常火爆,算法工程师年薪一般20万~100 万。越来越多的人学习算法,甚至很多非专业的人也参加培训或者自学,想转到算法行业。尽管如此,算法工程师仍然面临100万的人才缺口。缺人、急需,算法工程师成为众多企业猎头争抢的对象。 计算机的终极是人工智能,而人工智能的核心是算法,算法已经渗透到了包括互联网、商业、金融业、航空、军事等各个社会领域。可以说,算法正在改变着这个世界。 下面说说如何成为一个算法工程师,万丈高楼平地起,尽管招聘启事的算法工程师都要求会机器学习,或数据挖
一位从1998年就开始讲课的老教授Jeff Erickson,把他20年来在UIUC讲课的内容整理成了一本算法书,名字简单粗暴,就叫《算法》(Algorithms)。
给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权重尽可能低(这意味着组间相似度要尽可能低),组内的边的权重尽可能高(这意味着组内相似度要尽可能高)。将上面的例子代入就是将每一个博客当作图上的一个顶点,然后根据相似度将这些顶点连起来,最后进行分割。分割后还连在一起的顶点就是同一类了。更具体的例子如下图所示:
我们根据一些论文中提到的示例,使用最大流最小割定理将流量拥塞降至最低, 并应用了最短路径分析了交通瓶颈。
题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材箱$T$连流量为花费的边 每个实验向其需要其器材连边权为$INF$的边 答案为:总收入 - 最小割 考虑如何统计方案 在最小割中,割去实验表示不选该实验。 那么我们从源点出发,不经过边权为$0$的边,走到的就是需要选的。 这正好是Dinic最后一次增光的deep数组 #include<cstdio> #incl
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过不错的文章给大家。大家也可以留言区补充。
不得不说现在算法岗的热门程度已经到了一个空前绝后的程度,所以这一岗位的就业形势也是非常严峻。
数据结构 数组 Array 栈 Stack 队列 Queue 优先队列(Priority Queue, heap) 链表 LinkedList(single/double) Tree/ Binary Tree Binary Search Tree HashTable Disjoint Set Trie BloomFliter LRU Cache 算法分类 线性结构 莫队 (Mo’s Algorithm) 前缀和 基本数组 向量 链接表(linked list) 栈(stack) 队列 块状链表
木材表面缺陷不利于木材的加工利用,降低木制品的品质,影响生产企业的经济效益,因此木材表面缺陷的图像检测技术越来越受重视。而采用图像处理方法进行木材表面缺陷检测,是实现木材表面缺陷自动检测、提高企业生产效率的必由之路。
一个医院有n名医生,现有k个公共假期需要安排医生值班。每一个公共假期由若干天(假日)组成,第j个假期包含的假日用 Dj表示,那么需要排班的总假日集合为
当然,这完全也可以通过影视特效来完成——如果有一种技术能够用少量的素材创造出宏大的人群场景,那就可以满足需求,但前提是要非常逼真,天衣无缝。
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
距离 ACM模版-f_zyj v 1.1\text{ACM模版-f_zyj v 1.1} 版成工已经一年整了,这一年,我每次发现其中有不足时,都会在我在博客 ACM在线模版-f-zyj\text{ACM在线模版-f-zyj} 中对其进行更新,稀稀拉拉的一年过去了,我发现增删改的地方实在不少,所以总是有朋友问我什么时候会将这些更新整理到 PDFPDF 格式中……
本书内容按照算法策略分为7章内容,第1章从算法之美、简单小问题、趣味故事引入算法概念、时间复杂度、空间复杂度的概念和计算方法,以及算法设计的爆炸性增量问题,使读者体验算法的奥妙。第2~7章介绍经典算法的设计策略、实战演练、算法分析及优化拓展,分别讲解贪心算法,分治算法,动态规划,回溯法,分支限界法,线性规划和网络流。每一种算法都有4~10个实例,共50个大型实例,包括经典的构造实例和实际应用实例,按照问题分析、算法设计、完美图解、伪代码详解、实战演练、算法解析及优化拓展的流程,讲解清楚、通俗易懂。附录介绍常见的数据结构及算法改进用到的相关知识,包括sort函数、优先队列、邻接表、并查集、四边不等式、排列树、贝尔曼规则、增广路复杂性计算、最大流最小割定理等。
做了做杭电多校,知识点会的太少了。还是将重点放在刷专题补知识点上吧,明年的多校才是重点。
领取专属 10元无门槛券
手把手带您无忧上云