信息与通信工程学院 阵列信号处理实验报告(自适应波束形成 Matlab 仿真) …
运动估计是视频去噪技术的重要组成之一,计算相邻两帧视频序列各像素的相对运动偏移量,从而得到其运动轨迹。
将二维数据降低到一维数据的方法,有直接替换的方法。下图中,将数据条目的二维特征x1,x2,转化为了一维特征z1。其中,x1和x2是直接相关的(因为四舍五入出现了一些偏差),而z1等于x1。
2 利用一次平滑预测模型算出这么多天的预测日平均空载率,其中的平滑常数分别带入我假设的那三种数值,求出预测和实际均方差,最后取均方差最小的那个对应的平滑常数为我们所要的。
本文通过建立空载率的数学模型,帮助客户来分析出租车的空载率,从而对出租车补贴政策能否提高高峰期的实载率,缓解打车难问题进行了说明。
。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出
来源:极市平台本文共4500字,建议阅读8分钟本文将介绍机器学习、深度学习中分类与回归常用的几种损失函数。 机器学习中的监督学习本质上是给定一系列训练样本 ,尝试学习 的映射关系,使得给定一个 ,即便这个 不在训练样本中,也能够得到尽量接近真实 的输出 。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出与真实的之间的差距,给模型的优化指明方向。 本文将介绍机器学习、深度学习中分类与回归常用的几种损失函数,包括均方差损失 Mean Squared Los
转载自:https://zhuanlan.zhihu.com/p/77686118
机器学习中的监督学习本质上是给定一系列训练样本 ,尝试学习 的映射关系,使得给定一个 ,即便这个 不在训练样本中,也能够得到尽量接近真实 的输出 。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出 与真实的 之间的差距,给模型的优化指明方向。
本文将从损失函数的本质、损失函数的原理、损失函数的算法三个方面,详细介绍损失函数Loss Function。
RMSD即均方根偏差(root mean square deviation)。设有两组向量P和Q,每组向量有N个维度为D的向量,因此P和Q可以看做N×D矩阵,那么这两组向量的RMSD为
GBDT的全称是Gradient boosting decision tree,它是通过拟合负梯度Gradient boosting和决策回归树decision tree组合而成,该算法由多颗决策树构成,多颗决策树的结果加起来作为最终结论。让损失函数沿着梯度方向的下降。这个就是GDBT 的 GB的核心。GBDT 每轮迭代的时候,都去拟合损失函数在当前模型下的负梯度。(如果损失函数使用的是平方误差损失函数,则这个损失函数的负梯度就可以用残差来代替,以下所说的残差拟合,便是使用了平方误差损失函数)。
决策树是一种基本的分类和回归方法.决策树顾名思义,模型可以表示为树型结构,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布.
本文介绍了 ID3,C4.5,CART三种基本的决策树模型。首先介绍了决策树的特征选择,包括信息增益,信息增益率、基尼指数、最小均方差分别对应分类树ID3、C4.5、CART、回归树CART。然后介绍了决策树建树的一般流程、对比分类树和回归树建树的区别。最后介绍了树模型中避免过拟合问题的剪枝方法,包括前剪枝和后剪枝。
随机森林回归模型由多棵回归树构成,且森林中的每一棵决策树之间没有关联,模型的最终输出由森林中的每一棵决策树共同决定。 随机森林的随机性体现在两个方面: 1、样本的随机性,从训练集中随机抽取一定数量的样本,作为每颗回归树的根节点样本;
在进行有监督的机器学习建模时,一般假设数据独立同分布(i.i.d,independently and identically distributed)。即样本数据根据通过一个概率分布采样得到,而且这些样本相互之间独立。我们使用历史数据集去训练模型,使得损失函数最小化,然后用训练得到的模型去预测未知数据。如果一味追求让损失函数达到最小,模型就会面临过拟合问题,导致预测未知数据的效果变差。如何判断自己的模型是否训练正常?怎么解决过拟合问题?大家先来听听我朋友小明的故事。
2.6. 协方差估计 许多统计问题在某一时刻需要估计一个总体的协方差矩阵,这可以看作是对数据集散点图形状的估计。 大多数情况下,基于样本的估计(基于其属性,如尺寸,结构,均匀性), 对估计质量有很大影响。 sklearn.covariance 方法的目的是 提供一个能在各种设置下准确估计总体协方差矩阵的工具。 我们假设观察是独立的,相同分布的 (i.i.d.)。 2.7. 经验协方差 已知数据集的协方差矩阵与经典 maximum likelihood estimator(最大似然估计) (或
查全率是定义由给定查询和数据语料库的算法检索的相关性的大小。因此,给定一组文档和应该返回这些文档的子集的查询,查全率的值表示实际返回了多少相关文档。 此值计算如下:
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 机器学习(15)之支持向量机原理(一)线性支持向量机 机器学习(16)之支持向量机原理(二)软间隔最大化 机器学习(18)之支持向量机原理(三)线性不可分支持向量机与核函数 在前三篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法。这些都关注与SVM的分类问题。实际上SVM也可以用于回归模型,本篇就对如何将SVM用于回归模型做一个总结。重点关注SVM分类和SVM
代价函数是学习模型优化时的目标函数或者准则,通过最小化代价函数来优化模型。到目前为止,接触了一些机器学习算法,但是他们使用的代价函数不一定是一样的,由于,在现实的使用中,通常代价函数都需要自己来确定,所以,这里总结一下,代价函数都有哪些形式,尽量揣测一下,这样使用的原因。
http://blog.csdn.net/u011239443/article/details/77202136
CART全称为Classification and Regression Tree。
那从今天开始,我预计会陆陆续续出一些内容,来论述各个算法的基础核心点,大家感兴趣可以关注起来。
线性判别分析(Linear Discriminant Analysis, LDA)是一种监督学习的降维方法,也就是说数据集的每个样本是有类别输出。和之前介绍的机器学习降维之主成分分析(PCA)方法不同,PCA是不考虑样本类别输出的无监督学习方法。LDA的原理简单来说就是将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点会形成按类别区分。而我们的目标就是使得投影后的数据,类间方差最大,类内方差最小。
表示每个特征的方差.我们已经对数据完成了零均值化,现在只需要将所有数据都除以向量
回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。顾名思义,分类算法用于离散型分布预测,如前面讲过的KNN、决策树、朴素贝叶斯、adaboost、SVM、Logistic回归都是分类算法;回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签。
17/12/30-update :很多朋友私密我想要代码,甚至利用金钱诱惑我,好吧,我沦陷了。因为原始代码涉及到公司的特征工程及一些利益trick,所以我构造了一个数据集后复现了部分算法流程,需要看详细代码实现朋友可以移步Ensemble_Github
在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。CART算法也就是我们下面的重点了。由于CART算法可以做回归,也可以做分类,我们分别加以介绍,先从CART分类树算法开始,重点比较和C4.5算法的不同点。接着介绍CART回归树算法,重点介绍和CART分类树的不同点。然后我们讨论CART树的建树算法和剪枝算法,最后总结决策树算法的优缺点。
近年来,基金经理已开始用基于计算机的统计方法(例如ML)代替或补充经典的统计方法(例如计量经济学)。知名的ML公司包括RenTec,Two Sigma,DE Shaw,TGS,Capital Fund Management等。
3),给定x, 残差e_i要服从正态分布(Normal Distribution);
我们知道,在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数 来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。
小明是个机器学习爱好者,他很喜欢吃蛋糕。有一天他突然想到:能不能用蛋糕的直径来预测蛋糕的价格。于是他定了各种不同尺寸的蛋糕,然后把尺寸和价格的数据记录起来,接着使用回归函数来拟合这些训练数据。小明决定使用四次多项式:
提升树是以分类树或回归树为基本分类器的提升方法,提升树被认为是统计学习中性能最好的方法之一。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 局部线性嵌入(Locally Linear Embedding,简称LLE)也是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。 什么是流形学习 LLE属于流形学习(Manifold Learning)的一种。因此我们首先看看什
我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。
点击上方“专知”关注获取更多AI知识! 【导读】Google DeepMind在Nature上发表最新论文,介绍了迄今最强最新的版本AlphaGo Zero,不使用人类先验知识,使用纯强化学习,将价值网络和策略网络整合为一个架构,3天训练后就以100比0击败了上一版本的AlphaGo。Alpha Zero的背后核心技术是深度强化学习,为此,专知有幸邀请到叶强博士根据DeepMind AlphaGo的研究人员David Silver《深度强化学习》视频公开课进行创作的中文学习笔记,在专知发布推荐给大家!(关注
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢?
简单模型(左边)是偏差比较大造成的误差,这种情况叫做欠拟合,而复杂模型(右边)是方差过大造成的误差,这种情况叫做过拟合。
在前四篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法。这些都关注与SVM的分类问题。实际上SVM也可以用于回归模型,本篇就对如何将SVM用于回归模型做一个总结。重点关注SVM分类和SVM回归的相同点与不同点。
本系列为深入篇,尽可能完善专题知识,并不会所有的都会出现在面试中,更多内容,详见:Reflection_Summary,欢迎交流。
常见的机器学习&数据挖掘数学知识点之Basis SSE(Sum of Squared Error, 平方误差和) SSE=∑i=1n(Xi−X¯¯¯)2 SAE(Sum of Absolute Error, 绝对误差和) SAE=∑i=1n|Xi−X¯¯¯| SRE(Sum of Relative Error, 相对误差和) SRE=∑i=1nXi−X¯¯¯X¯¯¯ MSE(Mean Squared Error, 均方误差) MSE=∑ni=1(Xi−X¯¯¯)2n RMSE(Root M
如果直接使用线性回归的MSE会让逻辑回归的代价函数变成非凸函数,这样就会导致有非常多的局部最优值,导致梯度下降法失效。所以引入了交叉熵损失函数来替代线性回归的MSE(均方误差)
关于作者:饼干同学,某人工智能公司交付开发工程师/建模科学家。专注于AI工程化及场景落地,希望和大家分享成长中的专业知识与思考感悟。
可以从多个角度来理解最小二乘方法,譬如从几何方面考虑,利用正交性原理导出。
定义:一组数据向其中心值靠拢的倾向和程度 测度:寻找数据的水平代表值或中心值 常用的测度指标:①均值②中位数③众数
2 数据可视化 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自 己去发现了。
PCA或K-L变换是用一种正交归一向量系表示样本。如果只选取前k个正交向量表示样本,就会达到降维的效果。PCA的推导基于最小化均方误差准则,约束是:u为单位正交向量。推导结果是,正交向量就是归一化的协方差矩阵的特征向量,对应的系数就是对应的特征值。使用PCA方法提取特征脸的步骤如下:
PCA: Principal Components Analysis,主成分分析法原理 1、引入 PCA算法是无监督学习专门用来对高维数据进行降维而设计,通过将高维数据降维后得到的低维数能加快
PCA: Principal Components Analysis,主成分分析法原理 1、引入
领取专属 10元无门槛券
手把手带您无忧上云