版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内...
文章目录 背景 函数代码 调用方法 调用测试函数 背景 本人最近需要写多个仿真,需要大量用到MSE(均方误差)计算,于是干脆将MSE运算封装为函数,后续使用直接进行调用即可。...函数代码 %Project: 均方误差函数 %Author: Jace %Data: 2021/11/01 %====================函数体==================== function...=================== for n=1:Dim %--------维度循环-------- for k=Step:N %--------时刻循环-------- MSEC(n)=0;%误差平方和变量清零...for i = k-(Step-1):k %--------加和循环-------- MSEC(n)=MSEC(n)+(xkf(n,i)-x(n,i))^2;%误差平方和 end MSE...如Dim=1,则只计算第一个状态值的MSE,相应算得的MSE也只有1N维; 输入的估计矩阵xkf和状态矩阵x都是估计算法迭代计算之后的结果矩阵,维度应该是Dim_n*N维; 由于前Step长度不足计算,
100,10),error~N(0,1) 2.自己定一个实际对线性回归模型,并计算得到真实的y y = 1.5+0.8x1+1.8x2+error 3.对x1,x2 进行线性拟合,当然这里也可以自写函数用最小二乘法原理...,进行参数对估计 4.提取的每一个beta1,beta2 5.计算他的均方误差,计算公式 代码 k = 100000 # 定义实验次数 beta_x1 = c() # 定义空列 beta_x2 =...beta2 = 1.8 x1 = rnorm(100,5,3) # 产生随机数 x2 = rnorm(100,100,10) error = rnorm(100,0,1) # 产生随机误差
方差、协方差、标准差(标准偏差/均方差)、均方误差、均方根误差(标准误差)、均方根值 本文由博主经过查阅网上资料整理总结后编写,如存在错误或不恰当之处请留言以便更正,内容仅供大家参考学习。...= 137.5 = [(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/(4-1) 样本标准偏差 S = Sqrt(S^2)=75 均方误差...(mean-square error, MSE) 均方误差是反映估计量与被估计量之间差异程度的一种度量,换句话说,参数估计值与参数真值之差的平方的期望值。...均方根误差(root mean squared error,RMSE) 均方根误差亦称标准误差,是均方误差的算术平方根。...均方根值(root-mean-square,RMES) 均方根值也称作为方均根值或有效值,在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值。
最近参考了一篇博客,感觉对这个概念讲得比较好,我通过博客在这里同一整理一下: 均方差是数据序列与均值的关系,而均方误差是数据序列与真实值之间的关系;重点在于 均值 与 真实值之间的关系; 方差是 数据与...均值(数学期望)之间的平方和; 标准差是方差的平均值开根号,算术平方根; 标准差是均方差,均方差是标准差; 均方误差为各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差...,它的开方叫均方根误差,均方根误差才和标准差形式上接近; 保持更新,资源摘抄自网络;更多内容请关注 cnblogs.com/xuyaowen;
本文主要介绍回归问题下的损失函数——均方误差(MSE,mean squared error)。...下面代码展示如何用Tensor实现均方差损失函数: mse = tf.reduce_mean(tf.square(y_ - y)) tf.reduce_mean:所有元素的均值。
这是维基百科中定义的均方误差 (MSE) 公式。它代表了一个非常简单的概念,但如果您刚开始使用 ML,可能不太容易读懂。 让我们从内而外拆开包装。...您希望误差变为 0。如果您预测房价,误差可能是预测价格与实际价格之间的差异。 从标签中减去预测是行不通的。误差可能为负也可能为正,这是对样本求和时的问题。您可以取绝对值或误差的平方。...想象一下你对两栋房子的价格的 预测是这样的: 房子 1:实际 120K,预测 100K -> 误差 20K 房子 2:实际 60K,预测 80K -> 误差 -20K 如果你把这些加起来,误差将为 0,...我们需要计算每一个的误差并求和。同样,在这里让误差始终≥ 0 很重要。 如果要比较不同大小批次的误差,则需要对样本数量进行归一化——取平均值。例如,您可能想查看哪个批次大小产生的误差较小。...您还应该查看平均绝对误差 (MAE),它可以更好地处理异常值。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
刚开始学习机器学习的时候就接触了均方误差(MSE,Mean Squared Error),当时就有疑惑,这个式子是怎么推导的,但是因为懒没有深究。...误差 真实值和预测值之间通常情况下是会存在误差的,我们用ε来表示误差,对于每个样本都有: (3) 上标i表示第i个样本。...误差ε是独立并且具有相同的分布,并且服从均值为0,方差为 θ 2 θ^2 θ2的正态分布。 由于误差服从正态分布,那么有: (4) 将(3)带入(4)中有: (5) 3....这也是一般似然函数的求解方法: (7) 将(7)式展开并化简有: (8) (8)式等式右侧的第一项为一个常量,似然函数要取最大值,因而第二项越小越好,有: (9) (9)式相当于最小二乘法的式子...,即是均方误差的表达式。
Matlab 计算均方误差MSE的三种方法 数据说明: ytest 测试集y,真实的y值,是一维数组; ytest_fit 基于测试集 x 预测的y值,是一维数组; test_error...是预测误差。.../*ytest测试集y,真实的y值,是一维数组 ytest_fit 预测的y值,是一维数组 test_error 是预测误差*/ test_error = ytest - ytest_fit; test_mse
均方误差 MSE (mean squared error) 总的来说,方差是数据序列与均值的关系,而均方误差是数据序列与真实值之间的关系,所以我们只需注意区分 真实值和均值 之间的关系就行了。...均方误差(MSE)是各数据偏离真实值 差值的平方和 的平均数方差是平均值,均方误差是真实值。...均方根误差 RMSE(Root Mean Squard Error) 均方根误差是均方误差的算术平方根亦称标准误差, 均方误差是各数据偏离真实值差值的平方和的平均数,也就是误差平方和的平均数,均方根误差才和标准差形式上接近...那么均方误差和均方根误差就可以求出来。总的来说,均方差(标准差)是数据序列与均值的关系,而均方根误差是数据序列与真实值之间的关系。...经过前面的铺垫下面才是真正的大boos ATE:absolute trajectory error 绝对轨迹误差 绝对轨迹误差直接计算相机位姿的真实值与SLAM系统的估计值之间的差,可以非常直观地反应算法精度和轨迹全局一致性
、均方误差又是什么?...标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,...从上面定义我们可以得到以下几点: 1、均方差就是标准差,标准差就是均方差 2、均方误差不同于均方误差 3、均方误差是各数据偏离真实值的距离平方和的平均数 举个例子:我们要测量房间里的温度...,很遗憾我们的温度计精度不高,所以就需要测量5次,得到一组数据[x1,x2,x3,x4,x5],假设温度的真实值是x,数据与真实值的误差e=x-xi 那么均方误差MSE= 总的来说,均方差是数据序列与均值的关系...,而均方误差是数据序列与真实值之间的关系,所以我们只需要搞清楚真实值和均值之间的关系就行了。
,最终使 e(n)的均方值最小。...误差信号为: ? 自适应线性组合器按照误差信号均方值最小的准则,即: ? 输入信号的自相关矩阵为: ? 期望信号与输入信号的互相关矩阵为: ? 则均方误差的简单表示形式为: ?...该函数图形是L+2维空间中一个中间下凹的超抛物面,有唯一的最低点,该曲面称为均方误差性能曲面,简称性能曲面。 均方误差性能曲面的梯度: ?...均方误差为: ? 利用最陡下降算法,沿着性能曲面最速下降方向(负梯度方向)调整滤波器强权向量,搜索性能曲面的最小点,计算权向量的迭代公式为: ?...LMS自适应算法直接利用瞬态均方误差对瞬时抽头向量(滤波器系数)求梯度: ? 由此可得传统LMS自适应滤波算法流程如下: ?
MSE均方误差(L2 loss) 1.代码展示MAE和MSE图片特性 import tensorflow as tf import matplotlib.pyplot as plt sess = tf.Session...[外链图片转存失败(img-PAQ9mnqd-1562394972088)(http://i.imgur.com/D4n2Dsz.jpg)] ,a=σ(z), where z=wx+b 利用SGD算法优化损失函数...,通过梯度下降法改变参数从而最小化损失函数: 对两个参数权重和偏置进行求偏导(这个过程相对较容易): 参数更新: 这边就说一种简单的更新策略(随机梯度下降): [外链图片转存失败(img-pTU7Q58r...导数以及导数的分布图如下图所示: 我们可以从sigmoid激活函数的导数特性图中发现,当激活值很大的时候,sigmoid的梯度(就是曲线的斜率)会比较小,权重更新的步幅会比较小,这时候网络正处在误差较大需要快速调整的阶段
研究 并仿真了基于最小均方误差准则的 LMS 算法、RLS 算法和 MVDR 自适应 算法,并且做了一些比较。关键词:数字…… MVDR算法matlab程序_计算机软件及应用_IT/计算机_专业资料。...MVDR Self-adapting Beam-forming Algorism Abstract Beamforming technology and signal speci…… 研究并仿真了基于最小均方误差准...则的 LMS 算法、RLS 算法和 MVDR 自适应算法,并且做了一些比较。...关键词:数字波束形成、自适应波束形成、智能天线、最小均方…… 同时研 究了窄带信号的自适应波束形成的经典算法。...研究并仿真了基于最小均方误差准 则的 LMS 算法、RLS 算法和 MVDR 自适应算法,并且做了一些比较。
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
我要讲的几种方法 绪论 自适应滤波的基本原理 自适应滤波算法 自适应滤波算法种类 最小均方误差算法(LMS) 递推最小二乘算法(RLS) 变换域自适应滤波算法 仿射投影算法 其他 自适应滤波算法性能评价...自适应滤波的基本原理 自适应滤波算法 自适应滤波算法种类 最小均方误差算法(LMS) 由Widrow和Hoff提出的最小均方误差(LMS)算法,因其具有计算量小、易于实现等优点而在实践中被广泛采用。...递推最小二乘算法(RLS) LMS算法的优点是结构简单,鲁棒性强,其缺点是收敛速度慢。...Umeda提出,它是能量归一化最小均方误差(NLMS)算法的推广。仿射投影算法的性能介于LMS算法和RLS算法之间,其计算复杂度比RLS算法低。...能量归一化最小均方误差(NLMS)算法是LMS算法的一种改进算法,NLMS算法可以看作是一种时变步长因子的LMS算法。其收敛性能对输入信号的能量变化不敏感。
交叉熵损失与均方误差损失 常规分类网络最后的softmax层如下图所示,传统机器学习方法以此类比, ?...对这个样本,交叉熵(cross entropy)损失为 image.png 均方误差损失(mean squared error,MSE)为 image.png 则 (m) 个样本的损失为...\ell = \frac{1}{m} \sum_{i=1}^m L_i 对比交叉熵损失与均方误差损失,只看单个样本的损失即可,下面从两个角度进行分析。...在这个前提下,均方误差损失可能会给出错误的指示,比如猫、老虎、狗的3分类问题,label为 ([1, 0, 0]) ,在均方误差看来,预测为 ([0.8, 0.1, 0.1]) 要比 ([0.8, 0.15...image.png image.png 综上,对分类问题而言,无论从损失函数角度还是softmax反向传播角度,交叉熵都比均方误差要好。
第49章 STM32F429的自适应滤波器实现,无需Matlab生成系数(支持实时滤波) 本章节讲解LMS最小均方自适应滤波器实现,无需Matlab生成系数,可以自学习。...目录 49.1 初学者重要提示 49.2 自适应滤波器介绍 49.3 LMS最小均方介绍 49.4 Matlab自适应滤波器实现 49.5 自适应器设计 49.5.1 函数arm_lms_norm_init_f32...(MDK) 49.7 实验例程说明(IAR) 49.8 总结 ---- 49.1 初学者重要提示 ARM DSP库提供了LMS最小均方自适应滤波和归一化最小均方自适应滤波器,推荐使用归一化方式,因为归一化方法的步长更容易设置...49.3 LMS最小均方介绍 LMS 最小均方自适应滤波器能够”学习”未知的传输特性。LMS滤波器使用梯度下降方法,根据瞬时错误信号更新滤波系数。自适应滤波器常用于通信系统、均衡器和降噪。...最小均方滤波器。
第49章 STM32F429的自适应滤波器实现,无需Matlab生成系数(支持实时滤波) 本章节讲解LMS最小均方自适应滤波器实现,无需Matlab生成系数,可以自学习。...实验例程说明(IAR) 49.8 总结 49.1 初学者重要提示 ARM DSP库提供了LMS最小均方自适应滤波和归一化最小均方自适应滤波器,推荐使用归一化方式,因为归一化方法的步长更容易设置。...49.3 LMS最小均方介绍 LMS 最小均方自适应滤波器能够"学习"未知的传输特性。LMS滤波器使用梯度下降方法,根据瞬时错误信号更新滤波系数。自适应滤波器常用于通信系统、均衡器和降噪。...: 49.6 实验例程说明(MDK) 配套例子: V6-234_自适应滤波器实现,无需Matlab生成系数(支持实时滤波) 实验目的: 学习LMS最小均方滤波器。...最小均方滤波器。
领取专属 10元无门槛券
手把手带您无忧上云