理解和掌握堆(Heap)数据结构对于解决各种问题非常重要。堆是一种特殊的树形数据结构,常用于高效地维护一组元素中的最大值或最小值。本文将详细介绍Python中堆数据结构的使用,包括最小堆和最大堆,以及它们的应用场景。
1.添加元素:void addNum(int num),将num添加进数据结构中
我:如果这个数组是动态的,每次我都要找最小值,找到之后就从数组里删除这个元素,然后下次还想找最小值,怎么整。并且这个过程中,还会不断有新的数字插入数组。
LeetCode 295. Find Median from Data Stream 设计一个数据结构,该数据结构动态维护一组数据,且支持如下操作: 1.添加元素: void addNum(int num),将整型num添加至数据结构中。 2.返回数据的中位数: double findMedian(),返回其维护的数据的中位数。 中位数定义: 1.若数据个数为奇数,中位数是该组数排序后中间的数。[1,2,3] -> 2 2.若数据个数为偶数,中位数是该组数排序后中间的两个数字的平均值。[1,2,3,4] -> 2.5
Top K指的是从n(很大)个数据中,选取最大(小)的k个数据。例如学校要从全校学生中找到成绩最高的500名学生,再例如某搜索引擎要统计每天的100条搜索次数最多的关键词。
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
优先队列是计算机科学中的一类抽象数据类型。优先队列中的每个元素都有各自的优先级,优先级最高的元素最先得到服务;优先级相同的元素按照其在优先队列中的顺序得到服务。
在二叉搜索树(Binary Search Tree, BST)和最小堆(Min Heap)中,元素的排列顺序都是根据其关键字的大小。然而,它们之间存在着重要的区别。
栈与队列是两种重要的特殊线性表,从结构上讲,两者都是线性表,但从操作上讲,两者支持的基本操作却只是线性表操作的子集,是操作受限制的线性表。栈与队列两者最大的区别在于,栈元素后进先出(LIFO,Last In First Out),而队列元素先进先出(FIFO,First In First Out)。此外,针对队列这一特殊数据结构,有时需考虑队列元素的优先级的关系,即根据用户自定义的优先级排序,出队时优先弹出优先级更高(低)的元素,优先队列能更好地满足实际问题中的需求,而在优先队列的各种实现中,堆是一种最高效的数据结构。本文分别介绍了顺序栈、链式栈、链式队列和循环队列以及对应与前两种队列实现的最大/最小优先级队列,还有两种堆结构,最大堆与最小堆的基本结构,并给出了相应的C++类代码实现。
你可能会知道在内存中有栈和堆之分,但是这里堆和内存中的堆不一样,这里的堆是一种数据存储的方式
题目来源于 LeetCode 上第 295 号问题:数据流的中位数。难度级别为 Hard,目前通过率为 33.5% 。
动力节点小编来为大家进行优先级队列详解,优先级队列是一种特殊类型的队列,其中每个元素都与一个优先级值相关联。并且,元素根据其优先级提供服务。即,首先服务更高优先级的元素。
堆(Heap)是一种特殊的树状数据结构,通常用于实现优先队列。堆有两种主要类型:最大堆和最小堆。最大堆是一棵树,其中每个父节点的值都大于或等于其子节点的值,而最小堆是一棵树,其中每个父节点的值都小于或等于其子节点的值。堆的主要特点是根节点具有最大或最小值,这使得堆非常适合处理具有优先级的数据。 优先队列(Priority Queue)是一种抽象数据类型,通常基于堆实现。它允许在插入元素时指定优先级,并在删除元素时始终返回具有最高(或最低)优先级的元素。这使得优先队列适用于需要按优先级处理元素的应用,如任务调度、图算法(如Dijkstra算法)、模拟系统等。 以下是关于堆和优先队列的关键点:
总的来说,堆是一种高效的数据结构,它在实现优先队列、堆排序等场景中发挥着重要作用。
堆是一种基于树结构的数据结构,具有高效的插入和删除操作。在本文中,我们将深入讲解Python中的堆,包括堆的基本概念、类型、实现方式、应用场景以及使用代码示例演示堆的操作。
前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。 引入堆 之前我们提到过堆,那里,堆指的是内存中的区域,保存动态分配的对象,与栈相对应。这里的堆是一种数据结构,与内存区域和分配无关。 堆是什么结构呢?这个我们待会再细看。我们先来说明,堆有什么用?为什么要介绍它? 堆可以非常高效方便的解决很多问题,比如说: 优先级队列
最近阿里的一道面试题,其实基于多层博弈论,我想我刷过这题,我知道如何偷鸡的。我以为我在第二层,没想到我只在第一层。
程序里的定时器主要实现的功能是在未来的某个时间点执行相应的逻辑。在定时器模型中,一般有如下几个定义。
最近为了扩大团队规模,一直时刻保持脉脉上动态的更新,希望能认识一些新朋友新伙伴。发现脉脉确实挺有意思的哈,有人吐槽职场,有人招聘,有人分享面经,我今天看到有人发了个动态说面试被问Top K问题,忘记怎么做了,答得不是很好。
上一篇热文《构建企业级业务高可用的延时消息中台》引起了大家的讨论,评论里讨论除了时间轮算法外的其他高性能算法实现延迟消息的定时器。这一篇文章系统的梳理主流定时器算法实现的差异以及应用地方。
React调度器是按照浏览器的requestIdleCallback这个API实现的(因为兼容性原因没有直接使用该API),现在分别从存储结构以及调用方式讲解实现原理:
Top-K问题是一个广泛存在于计算机科学领域的问题,通常用于查找数据集中的前K个最大或最小元素。这些问题可以在各种上下文中出现,包括排序、查找、推荐系统和数据分析。在面试中,你可能会遇到多种Top-K问题的变体,这些问题要求你设计一个高效的算法来解决它们。
堆 堆是一种经过排序的树形数据结构,每个节点都有一个值,通常我们所说的堆的数据结构是指二叉树。所以堆在数据结构中通常可以被看做是一棵树的数组对象。而且堆需要满足一下两个性质: 1)堆中某个节点的值总是不大于或不小于其父节点的值; 2)堆总是一棵完全二叉树。 堆分为两种情况,有最大堆和最小堆。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆,在一个摆放好元素的最小堆中,父结点中的元素一定比子结点的元素要小,但对于左右结点的大小则没有规定谁大谁小。 堆常用来实现优先队列,堆的存取是
在数据流中,数据会不断涌入结构中,那么也就面临着需要多次动态调整以获得中位数。 因此实现的数据结构需要既需要快速找到中位数,也需要做到快速调整。
写在前面: 博主是一名大数据的初学者,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一天的生活就是一生的缩影。
上一篇分析了prepare阶段,check和idle阶段是一样的,所以就不分析了。今天分析定时器阶段。nodejs中setTimeout和setInterval就是使用libuv的定时器阶段实现的。libuv中,定时器是以最小堆实现的。即最快过期的节点是根节点。我看看定时器的数据结构。
为了设计一个摊还分析使得 INSERT 操作的摊还代价为 O(lg n) 且 EXTRACT-MIN 操作的摊还代价为 O(1),我们可以使用一个与二叉最小堆结构相关的势函数。通常,势函数会包含与数据结构状态相关的信息,并且会帮助我们调整每次操作的摊还代价。
二叉堆是计算机科学中一种非常著名的数据结构,由于它能高效、快速地找出最大值和最小值因此常被用于优先队列和堆排序算法。
我们在很多情况下都听到“堆”这个计算机术语,那么“堆”到底是什么呢?在数据结构中,堆是一种数据结构,具体一点,最常用的堆就是二叉堆, 二叉堆就是一棵完全二叉树(以下简称堆),我们可以利用这种数据结构来完成一些任务,典型的例子:堆排序就是利用堆来实现的一种高效的排序方式。接下来我们先看一下什么是完全二叉树:
七、为动态整数多重集 S (允许包含重复值)设计一种数据结构,支持如下两个操作:① INSERT(S,x) 将 x 插入 S 中;② DELETE-LARGER-HALF(S) 将最大的 ⌈|S|/2⌉ 个元素从S中删除。解释如何实现这种数据结构,使得任意 m 个 INSERT 和 DELETE-LARGER-HAIF 操作的序列能在 O(m) 时间内完成。还要实现一个能在 O(|S|) 时间内输出所有元素的操作。如果要写代码,请用go语言。
一道简单的题,可以让你如醉如痴,更是因为这一道题,你才会学会很多,不要小看简单,简单中蕴含深意。
在我的上一篇文章最小生成树算法(上)——Prim(普里姆)算法 主要讲解对于稠密图较为合适的Prim算法。那么在接下里这片文章中我主要讲解对于稀疏图较为合适的Kruskal算法。
堆排序的基本思想是将待排序的数组构建成一个最大堆或最小堆,然后通过堆的删除操作将堆顶元素逐个取出,得到一个有序序列。
堆排序(Heap Sort)是一种基于二叉堆数据结构的排序算法,它通过将元素构建成一个最大堆或最小堆,然后重复从堆中移除根节点,直到堆为空,从而得到有序数组。堆排序是一种原地排序算法,具有稳定的时间复杂度,通常效率较高。本文将详细介绍堆排序的工作原理和Python实现。
在学数据结构的时候,链表、堆栈、树三种数据结构印象最深刻。当时理解有误区,堆栈被当成一种结构,可能因为堆栈有同样的特性——只关心堆顶或栈顶的元素。
还记得面试现场第一篇文章【面试现场】如何判断一个数是否在40亿个整数中?发出之后,最后蛋哥说把40亿个数先进行外部排序。有读者问到,内存无法一次性加载40亿个数,如何排序?
👆点击“博文视点Broadview”,获取更多书讯 第二天,在另一家公司…… 小灰是吧?请简单介绍一下你自己。 好的,blah blah blah…… 下面考你一道算法题: 给你一个无序数组,要求你找出数组中的第k大元素。 题目是什么意思呢?比如给定的无序数组如下: 如果 k=6,也就是要寻找数组中的第6大元素,这个元素是哪一个呢? 显然,数组中第一大的元素是24,第二大的元素是20,第三大的元素是17 ......第6大的元素是9。 让我想想啊…… 对了,我可以先把无序数组排序
描述 给定一个长度为 n 的可能有重复值的数组,找出其中不去重的最小的 k 个数。例如数组元素是4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4(任意顺序皆可)。 数据范围:0≤k,n≤10000,数组中每个数的大小0 ≤val≤1000 要求:空间复杂度 O(n) ,时间复杂度 O(nlogn)
在 未排序 的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
排序的时候我们可以选择快速排序或归并排序等算法。为了方便,我们把排序好的2G有序数据称之为有序子串吧。接着我们可以把两个小的有序子串合并成一个大的有序子串。
节点的度:一个节点含有的子树的个数称为该节点的度; 树的度:一棵树中,最大的节点的度称为树的度; 叶节点或终端节点:度为零的节点; 非终端节点或分支节点:度不为零的节点; 双亲节点或父节点:若一个结点含有子节点,则这个节点称为其子节点的父节点; 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 兄弟节点:具有相同父节点的节点互称为兄弟节点; 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推; 树的高度或深度:树中节点的最大层次; 堂兄弟节点:双亲在同一层的节点互为堂兄弟; 节点的祖先:从根到该节点所经分支上的所有节点; 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。 森林:由m(m>=0)棵互不相交的树的集合称为森林;
堆是一种树形数据结构,其中子节点与父节点之间是一种有序关系。最大堆中父节点大于或等于两个子节点,最小堆父节点小于或等于两个子节点。Python的heapq模块实现了一个最小堆。
题目描述:中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
完全二叉树就是像下图一样的二叉树,所有叶结点的深度相同,并且所有内部结点都有两个子结点
树结构是计算机科学中一种重要且广泛应用的数据结构,它具有层级关系,被广泛用于解决各种问题。在本文中,我们将深入学习树的基本概念、遍历方式以及堆和优先队列的应用。
这篇文章在很久很久之前讲过,不过出了些小错误,今天把它修正了,并且从实战 + 漫画的方式带你领略外部排序魅力,并且让你知道外部排序的实现方式没有你想的那么简单。
堆(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质: 堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。 本次主要来学习一下关于堆排序算法,本代码参考了白话经典算法的堆与堆排序,里面讲了堆的操作和堆排序,需要了解详细的请阅读原文。
一般都用数组来表示堆,i结点的父结点下标就为(i–1)/2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
领取专属 10元无门槛券
手把手带您无忧上云