注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。 将元素存储到数组中后,可以根据之前写的二叉树文章中的性质 对树进行还原。 假设i为节点在数组中的下标则有 1. 如果 i 为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2 2. 如果2 * i + 1 小于节点个数,则节点i存在左孩子下标,且为2 * i + 1,否则没有左孩子;如果2 * i + 2小于节点个数,则节点i存在右孩子下标,且为2 * i + 2,否则没有右孩子。
总的来说,堆是一种高效的数据结构,它在实现优先队列、堆排序等场景中发挥着重要作用。
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。 最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
我们把二叉堆的根节点称之为堆顶。根据二叉堆的特性,堆顶要嘛是整个堆中的最大元素,要嘛是最小元素。
堆是一种特殊的树形数据结构,具有完全二叉树的特性。在堆中,父节点的值总是大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆通常用于实现优先队列,其中每个元素都有一个优先级,优先级最高的元素总是位于堆的根节点。堆的插入和删除操作的时间复杂度都是O(log n),因此堆是一种高效的数据结构。此外,堆还可以用于实现内存管理,例如垃圾回收和内存分配等。
前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。 引入堆 之前我们提到过堆,那里,堆指的是内存中的区域,保存动态分配的对象,与栈相对应。这里的堆是一种数据结构,与内存区域和分配无关。 堆是什么结构呢?这个我们待会再细看。我们先来说明,堆有什么用?为什么要介绍它? 堆可以非常高效方便的解决很多问题,比如说: 优先级队列
栈与队列是两种重要的特殊线性表,从结构上讲,两者都是线性表,但从操作上讲,两者支持的基本操作却只是线性表操作的子集,是操作受限制的线性表。栈与队列两者最大的区别在于,栈元素后进先出(LIFO,Last In First Out),而队列元素先进先出(FIFO,First In First Out)。此外,针对队列这一特殊数据结构,有时需考虑队列元素的优先级的关系,即根据用户自定义的优先级排序,出队时优先弹出优先级更高(低)的元素,优先队列能更好地满足实际问题中的需求,而在优先队列的各种实现中,堆是一种最高效的数据结构。本文分别介绍了顺序栈、链式栈、链式队列和循环队列以及对应与前两种队列实现的最大/最小优先级队列,还有两种堆结构,最大堆与最小堆的基本结构,并给出了相应的C++类代码实现。
F(h) = 2^0*2^1+2^1*2^2+...+2^(h-2)*2^(h-1)
可以看出,MIN-HEAPIFY和MAX-HEAPIFY的操作非常相似,唯一的区别在于交换的元素不同。因此,它们的运行时间也应该是相似的。
一般都用数组来表示堆,i结点的父结点下标就为(i–1)/2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
对于接触编程的人员来说,堆这个词经常会听到,经常和一群名次混合堆区,栈区,静态区等等,面试的时候可能经常也会遇到一个算法,堆排,今天小编主要和大家一起来看看堆这个数据结构。
如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 堆的性质: 堆中某个节点的值总是不大于或不小于其父节点的值; 堆总是一棵完全二叉树。
冒泡排序的时间复杂度为O(N2),空间复杂度为O(1);qsort排序的时间复杂度为 O(nlogn),空间复杂度为O(logn),而今天所讲到的堆排序在时间与空间复杂度上相比于前两种均有优势
如果有一个关键码的集合K = { k1,k2 ,k3 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki <=k(2i+1 )且 ki<=k(2i+2) ( ki >=k(2i+1 )且 ki>=k(2i+2) ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
我们在说 大小根堆 时,只说了 根节点比孩子节点大,没有说 左右孩子节点谁比谁大、谁比谁小.
这里我们介绍一种特殊的二叉树:二叉查找树(binary search tree) 。光看名字就可以知道,这种二叉树的主要作用就是进行查找 操作。
我们在很多情况下都听到“堆”这个计算机术语,那么“堆”到底是什么呢?在数据结构中,堆是一种数据结构,具体一点,最常用的堆就是二叉堆, 二叉堆就是一棵完全二叉树(以下简称堆),我们可以利用这种数据结构来完成一些任务,典型的例子:堆排序就是利用堆来实现的一种高效的排序方式。接下来我们先看一下什么是完全二叉树:
自从写完了上一篇:程序员必备数据结构:栈之后,就一直盘算着写一篇“堆”,今天动手了。
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
![在这里插入图片描述](https://img-blog.csdnimg.cn/b9733adc7ec9467cb835499ec469cdac.png
我:如果这个数组是动态的,每次我都要找最小值,找到之后就从数组里删除这个元素,然后下次还想找最小值,怎么整。并且这个过程中,还会不断有新的数字插入数组。
如果有一个数字集合,并把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,且在逻辑结构(即二叉树)中,如果每个父亲节点都大于它的孩子节点那么此堆可以称为大堆;那么如果每个父亲节点都小于它的孩子节点那么此堆可以称为小堆。 堆的性质:
上次介绍了树,二叉树的基本概念结构及性质:二叉树数据结构:深入了解二叉树的概念、特性与结构
45节介绍了堆的概念和算法,上节介绍了Java中堆的实现类PriorityQueue,PriorityQueue除了用作优先级队列,还可以用来解决一些别的问题,45节提到了如下两个应用: 求前K个最大的元素,元素个数不确定,数据量可能很大,甚至源源不断到来,但需要知道到目前为止的最大的前K个元素。这个问题的变体有:求前K个最小的元素,求第K个最大的,求第K个最小的。 求中值元素,中值不是平均值,而是排序后中间那个元素的值,同样,数据量可能很大,甚至源源不断到来。 本节,我们就来探讨如何解决这两个问题。 求前
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 TOP-K问题是数据挖掘和信息检索中的一个重要问题。
一个支持两端插入和删除的线性集合,此接口支持容量受限和不受限的双端队列(大多数实现容量不受限)。
堆排序 堆的定义 堆(heap),这里所说的堆是数据结构中的堆,而不是内存模型中的堆。堆通常是一个可以被看做一棵树,它满足下列性质: [性质一] 堆中任意节点的值总是不大于(不小于)其子节点的值; [性质二] 堆总是一棵完全树。 将任意节点不大于其子节点的堆叫做最小堆或小根堆,而将任意节点不小于其子节点的堆叫做最大堆或大根堆。常见的堆有二叉堆、左倾堆、斜堆、二项堆、斐波那契堆等等。 排序的过程 将数组建成最大堆或者最小堆 取出堆顶的数据和数组末尾的数据交换,此时对前面的数据再次建堆,再取堆顶的数据和数组中
开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第3天,点击查看活动详情 @TOC
堆和优先队列是常用的数据结构,它们在算法和程序设计中有着广泛的应用。本篇博客将重点介绍堆和优先队列的原理、实现以及它们在不同场景下的应用。我们将使用 Python 来演示堆和优先队列的实现,并通过实例展示每一行代码的运行过程。
树是一种非线性的数据结构,它是一种由有限个结点组成的具有层状结构的集合,把它叫做树是因为它看起来像一颗倒挂起来的树,叶子朝下,根root朝上。
文心一言 VS 讯飞星火 VS chatgpt (64)-- 算法导论6.5 3题
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 有一个特殊的结点,称为根结点,根节点没有前驱结点。除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。
在二叉搜索树(Binary Search Tree, BST)和最小堆(Min Heap)中,元素的排列顺序都是根据其关键字的大小。然而,它们之间存在着重要的区别。
在学习完树后,我进入到堆的学习,总的来说堆就是一种特殊的树,以下是我对堆的一些总结和归纳:
🎬 鸽芷咕:个人主页 🔥 个人专栏:《速学数据结构》 《C语言进阶篇》
堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组对象。
实现堆关键在于堆调整,堆有向上调整和向下调整,当pop堆顶元素的时候是弹出数组里面最小的元素,这个时候需要向下调整堆,把堆顶元素的值更新为数组末尾元素的值,然后从堆顶开始向下调整堆
要在 O(log n) 时间内完成 HEAP-DELETE 操作,可以使用以下方法:
选择排序可以用扑克牌理解,眼睛看一遍所有牌,选择最小的放在最左边。然后略过刚才排完的那张,继续进行至扑克牌有序。这样一次一次的挑选,思路很顺畅。总结为: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
图解如下: 以int a[] = {4,7,8,5,6,2,1,9}为例 1.建堆
除根结点之外每个结点有且只有一个前驱(父结点) 每个结点都可以由多个后驱(子结点) 树是==递归==定义的,包含和自身形态相似的子结构,每棵树都可以分为根和子树,每棵树都是由根和n棵子树构成的(n>=0) 递归就是当前问题和子问题(建议百度) 注意:树形结构中子树不能有交集,否则会结点会不只有一个父结点
如果有一个关键码的集合K = {k0,k1,k2…kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <=K2*i+1 且 Ki<=K2*i+2 (Ki >= K2*i+1且 Ki>= K2*i+1) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。堆的性质:
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》 《高效算法》
堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义:
堆(Heap)与栈(Stack)是开发人员必须面对的两个概念,在理解这两个概念时,需要放到具体的场景下,因为不同场景下,堆与栈代表不同的含义。一般情况下,有两层含义: (1)程序内存布局场景下,堆与栈表示两种内存管理方式; (2)数据结构场景下,堆与栈表示两种常用的数据结构。
这里排序无非就是升序和降序,那么,之前用的冒泡排序时间复杂度是很高的,所以这次来了解一个更加高效率的。
一、堆 1.概念 堆的物理结构(我们能看到的)是一个数组 堆的逻辑结构(我们想象出来的)是一个完全二叉树 2.特性 1.结构性:用数组表示完全二叉树 2.有序性: 任一结点的关键字是其子树所有结点的最大值(最小值) 而拥有最大值在顶叫做 大堆 拥有最小值在顶叫做 小堆 3. 父子结点 因为都是由数组表示的完全二叉树 而数组对应下标 左孩子下标 =父亲节点下标*2+1 右孩子下标 =父亲节点下标*2+2 二、向下调整算法 1.概念 向下调整算法 以小堆为例, 当满足左子树与右子树都
开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第4天,点击查看活动详情 @TOC
领取专属 10元无门槛券
手把手带您无忧上云