在图论中,最小生成树是一个重要的概念,它是一个连通图的子图,包含图中的所有节点,并且边的权重之和最小。 Prim 算法和 Kruskal 算法是两种常用的最小生成树算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中
最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。根据定义可知对于一个有V个顶点的图来说,其最小生成树定包含V个顶点与V-1条边。反过来如果一个图的最小生成树存在,那么图一定是连通图。 对于最小生成树算法最著名的有两种:Prim算法与Kruskal算法。
图的“多对多”特性使得图在结构设计和算法实现上较为困难,这时就需要根据具体应用将图转换为不同的树来简化问题的求解。
在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
该文章是一篇技术文章,主要介绍了如何通过编辑距离算法实现文本相似度的计算。文章首先介绍了编辑距离算法的原理,然后详细讲解了基于编辑距离的文本相似度计算方法,并给出了具体的实现代码。最后,文章还探讨了编辑距离算法在技术社区中的应用,包括相似度计算和相似问答系统。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
由一个带权值的联通图到一个最小生成树的过程,其实就是从图的所有边中挑出一部分边用来组成树的过程,所以关键在于如何挑选边。
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
PHP数据结构(十一)——图的连通性问题与最小生成树算法(1) (原创内容,转载请注明来源,谢谢) 一、连通分量和生成树 1、无向图 设E(G)为连通图G的所有边的集合,从图的任意一点出发遍历图,可以将E(G)分为T(G)和B(G),T表示已经遍历过的边的集合,B表示剩余边的集合。因此,T与图G的所有顶点构成的极小连通子图,就是G的一棵生成树。由深度优先搜索的称为深度优先生成树;由广度优先搜索的称为广度优先生成树。 2、有向图 有向图和无向图类似。有向图的强连通分量,是对图进行深度优先遍历,遍历完成后,
上一篇文章,我们讲了图的创建和遍历,其中遍历的算法主要有BFS(广度优先算法)和DFS(深度优先算法)两种,并且DFS算法对很多问题都有很好的启示!而今天我们要说一个非常实用的算法——最小生成树的建立!这是图论中一个经典问题,可以使用Kruskal和Prim两种算法来进行实现!
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
像图论算法这种高级算法虽然不算难,但是阅读量普遍比较低,我本来是不想写 Prim 算法的,但考虑到算法知识结构的完整性,我还是想把 Prim 算法的坑填上,这样所有经典的图论算法就基本完善了。
在之前的文章中已经详细介绍了图的一些基础操作。而在实际生活中的许多问题都是通过转化为图的这类数据结构来求解的,这就涉及到了许多图的算法研究。
上一篇:加权无向图的实现 加权无向图----Kruskal算法实现最小生成树 图的生成树是它的一棵含有其所有顶点的无环连通子图,加权图的最小生成树(MST)是它的一棵权值最小的生成树。 切分:图的一种切分是将图的所有顶点分为两个非空且不重合的两个集合。横切边是一条连接两个属于不同集合的顶点的边。 切分定理:在一幅加权图中,给定任意的切分,它横切边中权重最小者必然属于图的最小生成树。 切分定理是解决最小生成树问题的所有算法的基础。 Prim算法能够得到任意加权连通无向图的最小生成树。 数据结构设计: 采用一
在上一篇文章中,我们看了一下图的遍历算法,主要是对图的深度优先遍历和图的广度优先遍历算法思想的介绍。接下来让我们来看一下图的最小声成树算法。
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
练习题: LeetCode 1135. 最低成本联通所有城市(最小生成树+排序+并查集) LeetCode 1489. 找到最小生成树里的关键边和伪关键边(并查集+kruskal最小生成树)
给定一个带权的无向连通图,能够连通该图的全部顶点且不产生回路的子图即为该图的生成树;
Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于求解单源最短路径问题的经典算法。该算法可以计算从单个起始节点到图中所有其他节点的最短路径。Dijkstra’s algorithm适用于没有负权边的有向或无向带权图。
此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
"村村通"是国家一个系统工程,其包涵有:公路、电力、生活和饮用水、电话网、有线电视网、互联网等等。
它的最小生成树是什么样子呢?下图绿色加粗的边可以把所有顶点连接起来,又保证了边的权值之和最小:
快要一整个月没有更新博客了,之前的几周每周都想着要写,但是最后时间还是排不开,最近的状态是一直在写代码,一直在怼工作的需求,顺便刷刷算法题,国庆则是没心没肺的玩了七八天,时间这么一分摊,写博客的时间总是挤不出来,罪过罪过。
连通图:无向图G中,若从顶点i到顶点j有路径相连,则称i,j是连通的;如果G是有向图,那么连接i和j的路径中所有的边都必须同向;如果图中任意两点之间都是连通的,那么图被称作连通图。
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算
通俗易懂的讲就是最小生成树包含原图的所有节点而只用最少的边和最小的权值距离。因为n个节点最少需要n-1个边联通,而距离就需要采取某种策略选择恰当的边。
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不再连通;反之,在其中引入任何一条新边,都会形成一条回路。
生成树:给定无向图G=(V,E),连接G中所有点,且边集是E的n-1条边构成的无向连通子图称为G的生成树(Spanning Tree),而边权值总和最小的生成树称为最小生成树(Minimal Spanning Tree,MST)。
前言 在数据结构与算法的图论中,(生成)最小生成树算法是一种常用并且和生活贴切比较近的一种算法。但是可能很多人对概念不是很清楚,什么是最小生成树? 一个有 n 个结点的连通图的生成树是原图的极小连通子
前言 A wise man changes his mind,a fool never. Name:Willam Time:2017/3/1
最近双11又快到了 有女朋友的忙着帮女朋友清空购物车 有男朋友的忙着叫男朋友帮清购物车 而小编就比较牛逼了 小编沉迷学习,已经无法自拔。 那么今天小编又给大家带来什么好玩的东西呢? 没错 那就是小编通过 夜夜修仙,日日操劳 终于修成的正果 用起来很牛逼,说出去很装逼的 最小生成树 纲要 - 什么是图(network) - 什么是最小生成树 (minimum spanning tree) - 最小生成树的算法 1 什么是图 这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点(no
这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络。在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来。图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图:
PHP数据结构(十一)——图的连通性问题与最小生成树算法(2) (原创内容,转载请注明来源,谢谢) 再次遇到微信公众号限制字数3000字的问题。因此将Kruskal算法放于本文中进行描述。本文接上一篇文章。 4、Kruskal算法 1)该算法的时间复杂度为O(eloge),e表示边的数目,即该算法的时间复杂度和顶点数目无关。该算法适用于边数较少的稀疏网。 2)算法内容 假设N={V, {E}}是连通网,算法初始状态为包含图中的所有的点,没有边的T=(V, {
生成式句法分析指的是,生成一系列依存句法树,从它们中用特定算法挑出概率最大那一棵。句法分析中,生成模型的构建主要使用三类信息:词性信息、词汇信息和结构信息。前二类很好理解,而结构信息需要特殊语法标记,不做考虑。
题意:若最小生成树唯一则输出权值和,若不唯一输出Not Not Unique! 运用prim算法将最小生成树求出,然后在依次枚举删除最小生成树中的每一条边,判断是否还能构成一个新的最小生成树,且权值和与初始的权值和相等,若能构成则不唯一 #include<stdio.h> #include<stdlib.h> #include<vector> using namespace std; /*看了很久才相处为什么要用这个stl 假设v,u都为最小生成树中的点,但是 v,u所扩展出来的最小生成树边却不一定相等 所
在上一篇文章当中,我们主要学习了最小生成树的Kruskal算法。今天我们来学习一下Prim算法,来从另一个角度来理解一下这个问题。
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚
一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决。
Prim 算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中,算法从某一个顶点开始,逐渐长大覆盖整个连通网的所有顶点。
连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(u0∈V),TE=φ; (2)在所有u∈U, v∈V-U的边(u,v)中选择一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;(并修正U-V中各顶点到U的最短边信息) (3)重复步骤(2),直到U=V为止。 此时,TE中含有n-1条边,T=(V,{TE})为N的最小生成树。 普里姆算法是逐步向U中增加顶点的“加点法”。
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。 中文名 普里姆算法 外文名 Prim Algorithm 别 称 最小生成树算法 提出者 沃伊捷赫·亚尔尼克(Vojtěch Jarník) 提出时间 1930年 应用学科 计算机,数据结构,数学(图论) 适用领域范围 应用图论知识的实际问题 算 法 贪心 目录 1 算法描述 2 时间复杂度 3 图例描述 4 代码 ▪ PASCAL代码 ▪ c代码 ▪ C++代码 5 时间复杂度 算法描述编辑 1).输入:一个加权连通图,其中顶点集合为V,边集合为E; 2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空; 3).重复下列操作,直到Vnew = V: a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一); b.将v加入集合Vnew中,将边加入集合Enew中; 4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
本篇我们会聊聊最小生成树,最小生成树和之前的无向图最大的区别是这个每一条边都是带有权重的。在聊最小生成树之前 我们要先聊两个理念,因为最小生成树是基于这两个理念的基础上得到的相关数据结构算法。
事在人为,盛衰之理,虽曰天命,岂非人事哉!原庄宗之所以得天下,与其所以失之者,可以知之矣。------------《伶官传序》
图是一种由节点(顶点)和边组成的数据结构,用于表示不同元素之间的关系。图论算法旨在解决与图相关的问题,例如路径查找、最短路径、最小生成树等。在本文中,我们将深入讲解Python中的图论算法,包括图的表示、常见算法、应用场景,并使用代码示例演示图论算法的操作。
生成树指在无向图中找一棵包含图中的所有节点的树,此树是含有图中所有顶点的无环连通子图。对所有生成树边上的权重求和,权重和最小的树为最小生成树,次小的为次最小生成树。
给定一张带权无向图 G=(V,E),n = |V|, m = |E|。由 V 中全部 n 个顶点和 E 中 n-1 条边构成的无向连通子图被称为 G 的一棵生成树。边权和最小的生成树被称为无向图 G 的最小生成树(Minimum Spanning Tree,MST)。
在一个无向图G中,若将某个节点v去除之后后G所包含的连通域增多,则v称作切割节点(cut vertex或关节点(articulation point)。如果一个图不含任何关节点则称之为双连通图,最典型的就是完全图。任一无向图都可视作由若干个极大的双连 通子图组合而成,这样的每一子图都称作原图的一个双连通域(bi-connected component)。例如下图中的节点3和5就是关节点。
在我的上一篇文章最小生成树算法(上)——Prim(普里姆)算法 主要讲解对于稠密图较为合适的Prim算法。那么在接下里这片文章中我主要讲解对于稀疏图较为合适的Kruskal算法。
领取专属 10元无门槛券
手把手带您无忧上云