首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

动画演示广度优先算法寻找最短路径

上一节,我们刚刚介绍了使用深度优先算法(DFS)解决迷宫问题,这一节我们来介绍广度优先算法(BFS)。...DFS 算法找到的路径往往不是最短路径,速度慢但占用内存较少,而 BFS 算法找到的总是最短路径,速度较快但占用内存较多。 下图是使用 BFS 算法搜寻出来的一条路径: ?...使用广度优先算法搜寻迷宫路径的过程如下:从迷宫入口出发,查询下一步走得通的节点,将这些可能的节点压入队列中,已经走过的节点不再尝试。...如果迷宫是走得通的话,广度优先搜索会找到一条最短路径。 总结一下,深度优先搜索会一直前进,直到走到死胡同为止,再回退到上一个节点,改变之前的选择。...而广度优先搜索每次前进的时候,会把前后左右行得通的节点都尝试一遍,相当于每前进一个节点都要尝试多种可能,因此每次挑选的路径会是最短路径

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最短路径-Floyd算法

    --more--> > Floyd算法(Floyd-Warshall algorithm)又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径算法,与Dijkstra算法类似。...-来自百度百科 前一篇文章:[第六章 图-Dijkstra算法](https://study.sqdxwz.com/index.php/archives/13/) 我们已经学习过了单源最短路径求解方法...,这次我们来学习所有顶点间(任意两点间)的最短路径求解方法-Floyd算法。...对于求解任意两点最短路径的方式,我们也可以采用简单暴力将Dijkstra算法循环n遍(假设存在有n个顶点),也是可以求解任意两点间距离的,但是人类社会之所以会进步,难道仅仅是会使用筷子?...fr=aladdin)); 2.逐步试着在原路径中增加中间顶点,若加入中间顶点后路径变短,则进行修改,否则,维持原值; 3.进行所有顶点的试探,直至进行全部循环,算法结束。

    2.9K10

    最短路径-Dijkstra算法

    Dijkstra算法,又称"迪杰斯特拉算法",是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。...算法解析 1: 设置2个顶点集合S,T  S 存储已经找到的最短路径点的距离  T 存储未处理过的顶点 2: 先把起点A存储到T.准备处理 3: 获取到T的起点A,首先起点A到起点A的距离是0,直接存储到...S:A=>{length:0,route:A}, 4: 然后通过起点,获取起点周围的几个点和距离,例如B距离1,C距离5,D距离3,存储到T 5: 起点到周围的点都是当前的最短路径,直接存储到S:B=>...,route:ABC} (假想情况,为了方便理解更新最短路径),如果长度大于之前的,则不处理该点 8: 继续获取到E,C周围的点.存储到T 9: 如果已经获取到了终点(可以不需要终点,则之前遍历全部点)...,则不再获取终点周围的点 重复7,8步骤,直到T不存在数据 在这个过程中,可以保证起点到所有点都是最短路径 算法图解过程 例如 10x10 宫格图中: ?

    2.8K40

    最短路径:Dijkstra算法(求单源最短路径)Floyd算法(求各顶点之间最短路径

    最短路径: 在一个带权图中,顶点V0到图中任意一个顶点Vi的一条路径所经过边上的权值之和,定义为该路径的带权路径长度,把带权路径最短的那条路径称为最短路径。...DiskStra算法: 求单源最短路径,即求一个顶点到任意顶点的最短路径,其时间复杂度为O(V*V) 如图所示:求顶点0到各顶点之间的最短路径 代码实现: #include #include...: 求各顶点之间的最短路径,其时间复杂度为O(V*V*V) 如图所示,求之间的最短路径: 代码实现: #include #include #define...//递归输出两个顶点直接最短路径 void printPath(int u,int v,int path[][MaxVexNum]){ if(path[u][v]==-1){ printf(...;i<n;i++){ for(int j=0;j<n;j++){ A[i][j]=g.arcs[i][j]; path[i][j]=-1; } } //第二步:三重循环,寻找最短路径

    2.2K20

    最短路径算法java

    还是举昨天的Dijkstra算法来讲吧。...这里对不起了,用的别人的图 首先我们以1位初始点开始找,这时候我们发现1的附近只存在1---->2和1----->3这两条路径那么我们只需要选出这两者当中最短的一条保存那就是1---->2这条路径,这时候我们并没有保存其他的路径..., 所以就以2为起点开始发散,这时候我们发现2附近存在两条路径分别为2---->4和2---->3这时候我们存储其中最短的一条,即为2---->4这条路径,这时候存储4这个点。...这次循环我们就以4为点开始发散,这时候重点来了,4附近存在3条路,分别为4---->3和4---->5和4------>6,这时候我们发现,最短路径即为4---->3这条路径,**这里就是重点 **之前我们就已经发现了...顺便附上之前看了同学之后改进过的算法,但主要运用的是spfa算法

    2.2K10

    最短路径-Dijkstra算法

    迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。...-来自百度百科 一.最短路径问题的求解 1、单源最短路径用Dijkstra算法; 2、所有顶点间的最短路径用Floyd算法。...,而Dijkstra采用的是优先队列。...案例图 1.算法思路 1.指定一个节点,例如我们要计算 'A' 到其他节点的最短路径; 2.引入两个集合(S、U),S集合包含已求出的最短路径的点(以及相应的最短长度),U集合包含未求出最短路径的点(以及...图解2 3.这时候 A->B, A->C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。

    7K31

    最短路径(Floyd算法,弗洛伊德算法,多源最短路径

    算法思想:一开始各顶点之间的最短路径,就是邻接矩阵值,每一次加入一个顶点,然后判断该顶点加入后,其余起点通过该顶点到达其余顶点能否得到比之前更短的最短路径,如果找到了就进行最短路径和权值和的更新 ?...算法伪代码 ?...= 0; i < arcNum/2; i++) { cin >> vi >> vj >> k; arc[vi][vj] = k; arc[vj][vi] = k; } } //佛洛伊德算法...:最短路径P数组 最短路径长度d数组 void Shorttestpath_Floyd(Graph G, int(*p)[Max], int(*d)[Max]) { //初始化最短路径数组p和最短路径长度数组...< endl; cout << "最短路径:"; int k = p[i][j];//获得第一个路径顶点的下标 //打印当前最短路径的起点 cout << i; //如果打印的不是终点

    2.1K20

    算法|Dijkstra最短路径算法

    01 — 单源最短路径 首先解释什么是单源最短路径,所谓单源最短路径就是指定一个出发顶点,计算从该源点出发到其他所有顶点的最短路径。...如下图所示,如果源点设为A,那么单源最短路径问题,就是求解从A到B,从A到C,从A到D,从A到E,从A到F的最短路径。 ?...比如,从A到D的最短路径,通过肉眼观察可以得出为如下,A->C->D,距离等于3+3=6,其中A->C边上的数值3称为权重,又知这是无向图,从C到A的权重也为3。 ?...02 — Dijkstra算法求单源最短路径 这个算法首先设置了两个集合,S集合和V集合。S集合初始只有源顶点即顶点A,V集合初始为除了源顶点以外的其他所有顶点,如下图所示: ?...这个考虑是正确的,但是Dijkstra算法假定了边的权重值必须大于0,这样的假定,可以避免经过D到B的路径不可能小于5,因为除了A->B外,其他所有达到B的路径必然经过C,与C相连的顶点中,到达B是最小的

    6.3K50

    深入解析最短路径算法

    本文将介绍三种最短路径算法,分别是:戴克斯特拉算法(Dijkstra algorithm),弗洛伊德算法(Floyd algorithm)以及A*搜索算法。...第二节 戴克斯特拉算法(Dijkstra algorithm) 该算法解决的是有向图中单个源点到其他顶点的最短路径问题。...第三节 弗洛伊德算法(Floyd algorithm) 该算法解决的是有向带权图中两顶点之间最短路径的问题。...该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。 A*算法最核心的部分,就在于它的一个估值函数的设计上:f(n)=g(n)+h(n)。...这个估值函数遵循以下特性: •如果h(n)为0,只需求出g(n),即求出起点到任意顶点n的最短路径,则转化为单源最短路径问题,即Dijkstra算法; •如果h(

    61910

    单源最短路径算法

    当然这只是最基础的应用,关于单源最短路径还有很多变体: 1.单源最短路径 2.单目的地最短路径 3.单节点对最短路径 4.所有节点对最短路径 最短路径定义: 路径p=的权是指组成...常用的单源最短路径的解法有两种:Dijkstra算法和bellman_ford算法。 松弛操作 松弛:先测试v到s之间的最短路径是否可以改善,可以则改善。...这是因为单源最短路径和所有节点对的最短路径都是基于松弛操作来实现的,只不过不同的算法采用了不同的松弛次数和顺序。...算法步骤是指导纲要,具体实施还是要看oIer的水平, 代码实现: 变量及其说明,如果不光是求出某两个节点之间的最短路径,要求出最短路径的具体路径,就需要增加一个属性保存前驱节点,因此我将他们直接封装为一个...因此如果A——D最优结果途径C那么A—–>C也一定最优。所以我们只需要知道每个节点的前驱节点就一定可以打印一条最短路径出来。

    1.8K40

    图的最短路径算法

    图的最短路径算法 最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题。...全局最短路径问题:求图中所有的最短路径。适合使用Floyd-Warshall算法。...) 常用算法 Dijkstra最短算法(单源最短路) 图片例子和史料来自:http://blog.51cto.com/ahalei/1387799 算法介绍: 迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题...,算法最终得到一个最短路径树。...该算法常用于路由算法或者作为其他图算法的一个子模块。 指定一个起始点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。 ?

    2.7K20

    最短路径问题:Dijkstra算法

    定义 所谓最短路径问题是指:如果从图中某一顶点(源点)到达另一顶点(终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边的权值总和(称为路径长度)达到最小。...下面我们介绍两种比较常用的求最短路径算法: Dijkstra(迪杰斯特拉)算法 他的算法思想是按路径长度递增的次序一步一步并入来求取,是贪心算法的一个应用,用来解决单源点到其余顶点的最短路径问题。...算法思想 首先,我们引入一个辅助向量D,它的每个分量D[i]表示当前找到的从起始节点v到终点节点vi的最短路径的长度。...那么,下一条长度次短的最短路径是哪一条呢?假设次短路径的终点是vk,则可想而知,这条路径或者是(v, vk)或者是(v, vj, vk)。...算法描述 假设现要求取如下示例图所示的顶点V0与其余各顶点的最短路径: ?

    5.5K40

    Floyd算法求解最短路径

    Floyd算法求解最短路径 1、算法概述 2、算法实例 3、算法实战 3.1 算法描述 3.2 解题思路 3.3 代码实现 1、算法概述   Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径算法...该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德。   核心思路:通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。   ...上述概念来源于百度百科 2、算法实例   如下图所示,我们看怎么来求解两点之间的最短路径。   ...总结:Floyd算法可以算出任意两点的最短路径,可以处理带有负权边的图,但不能处理带有“负环”的图。...然后从1到n的每个点作为中转点,更新所有可能的最短路径长度。

    3.7K10
    领券