什么是LFULeast Frequently Used 最近最少使用,表示以次数为参考,淘汰一定时期内被访问次数最少的数据如果数据过去被访问多次,那么将来被访问的频率也更高比LRU多了一个频次统计,需要时间和次数两个维度进行判断是否淘汰关键流程新加入数据插入到队列尾部...//定义缓存容量 private int capacity; //定义存储key,value数值 private Map cacheValue; //存储key的使用频次...++ public V get(K key) { V value = cacheValue.get(key); //如果key获取的value不为空,则对这个key的使用次数...cacheObj.getLastTime()); }); } //定义比较对象 class CacheObj implements Comparable{ //定义使用的...key; this.count = count; this.lastTime = lastTime; } //用于比较大小,如果使用次数一样
自定义一个类,对列表进行封装,实现基于LRU算法的缓冲区。每次都从右侧放入和查找图书,缓冲区满时从左侧删除图书。 参考代码(lru_algorism.py): 测试结果:
Python中的最近公共祖先(Lowest Common Ancestor,LCA)算法详解 最近公共祖先(Lowest Common Ancestor,LCA)是二叉树中两个节点的最低共同祖先节点。...在本文中,我们将深入讨论最近公共祖先问题以及如何通过递归算法来解决。我们将提供Python代码实现,并详细说明算法的原理和步骤。...最近公共祖先问题 给定一个二叉树和两个节点p、q,找到这两个节点的最近公共祖先。 递归算法求解最近公共祖先 递归算法是求解最近公共祖先问题的一种常见方法。...{}".format(p.val, q.val, lca.val)) 输出结果: 节点 5 和节点 1 的最近公共祖先是节点 3 这表示在给定的二叉树中,节点5和节点1的最近公共祖先是节点3。...递归算法在解决最近公共祖先问题时具有简洁而高效的特性。通过理解算法的原理和实现,您将能够更好地处理树结构问题。
K最近邻(K-Nearest Neighbors,简称KNN)是一种简单而有效的监督学习算法,常用于分类和回归问题。本文将介绍KNN算法的原理、实现步骤以及如何使用Python进行KNN的编程实践。...什么是K最近邻算法? K最近邻算法是一种基于实例的学习方法,其核心思想是:如果一个样本在特征空间中的k个最相似(即最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。...KNN算法不需要训练模型,而是利用训练集中的数据进行预测。 KNN的原理 KNN算法的原理非常简单,主要包括以下几个步骤: 计算距离:计算测试样本与训练样本之间的距离,通常使用欧氏距离或曼哈顿距离。...使用KNN进行分类和回归 接下来,让我们使用KNN算法对一个简单的分类和回归问题进行预测: from sklearn.datasets import load_iris, load_boston from...通过本文的介绍,你已经了解了KNN算法的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用KNN算法。
本文讲解了操作系统中进程读内存时,维护高速缓存的页面淘汰算法,其中重点讲解了先进先出算法和最近最少使用算法,学习高速缓存 Cache 提高程序执行效率的原理。...常用的页面淘汰算法有四种:最优算法、随机算法、先进先出算法和最近最少使用算法。...---- 三、 最近最少使用算法 最近最少使用算法是每次淘汰最低频使用的数据。 这种算法不会出现倒挂现象(抖动现象)。...根据最近最少使用算法,1 2 3 三个数据最近最常使用的是 3,其次是 2,所以淘汰掉数据 1,如下图所示。...在数据 2 和 3 中,虽然都使用了 2 次,但数据 2 比数据 3 更最近被使用,所以数据 3 淘汰,这就是**【最近】【最少】使用算法**,结果如下图所示。
一、最近对问题的解释 看到算法书上有最近对的问题,简单来讲最近对问题要求出一个包含 个点的集合中距离最近的两个点。抽象出来就是求解任意两个点之间的距离,返回距离最小的点的坐标,以及最小距离。...这里会使用到欧式距离的求法: 以上是二维的情况,这其实和相似性的计算是类似的,所以便想去实现这样的一个问题。...二、最近对问题的蛮力解法 蛮力法是最直接的方法,就是求解任意两个点之间的距离,返回坐标和最小的距离 Java代码实现 package org.algorithm.closestpair; /*...i < length; i++) { System.out.println(i + "\t" + p[i].getX() + "\t" + p[i].getY()); } // 计算出最近对...double result[] = Util.closestPair(p, length); System.out.println("最近对为:"); System.out.println
所以以1为根节点DFS建树,然后通过求两点的LCA的方式,先求得最近公共祖先,然后再通过深度来求出两点距离 1 type 2 point=^node; 3 node=record
一、最近对问题的解释 看到算法书上有最近对的问题,简单来讲最近对问题要求出一个包含 ? 个点的集合中距离最近的两个点。...这里会使用到欧式距离的求法: ? 以上是二维的情况,这其实和相似性的计算是类似的,所以便想去实现这样的一个问题。...二、最近对问题的蛮力解法 蛮力法是最直接的方法,就是求解任意两个点之间的距离,返回坐标和最小的距离 Java代码实现 package org.algorithm.closestpair; /*...三、最近对问题的分治解法 分治的思想是将一个问题划分成几个独立的子问题,分别对子问题的求解,最终将子问题的解组合成原始问题的解。...在最近对问题中,首先通过一维坐标将整个空间分成坐标点个数相同的两个区间,如下图: ?
11.盛最多水的容器 来源:力扣(LeetCode) 链接: https://leetcode.cn/problems/container-with-most-water/ 给定一个长度为 n 的整数数组...找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。
2,正数数组profits 参数3, 正数k 参数4,正数m costs[i]表示i号项目的花费 profits[i]表示i号项目在扣除花 费之后还能挣到的钱(利润) k表示你不能并行、只能串行的最多做
来看看离它最近的三个邻居 在这三个邻居中,橙子比柚子多,因此这个水果很可能是橙子。你刚才就是使用K最近邻(k-nearest neighbours,KNN)算法进行了分类!
K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。...选择K个距离最近的样本,即K个最近邻。3. 对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。4....对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。...需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。...同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。
本文将介绍k最近邻算法的基本原理和使用方法,并通过一个示例来说明其应用过程。...算法原理k最近邻算法的原理非常简单:给定一个未知样本,将其与训练集中的实例进行距离度量,取距离最近的k个实例,根据这k个实例的类别进行投票,将未知样本归为票数最多的类别。...进行投票:根据k个最近邻的类别进行投票,并取票数最多的类别作为未知样本的分类结果。示例代码下面通过一个简单的示例来演示k最近邻算法的应用过程。...然后,我们使用KNeighborsClassifier类创建了一个k最近邻分类器,并指定了参数n_neighbors=3,表示我们要选择3个最近邻。...最后,使用accuracy_score函数计算分类器的准确率,并输出结果。k最近邻(kNN)算法是一种简单而有效的分类算法,但它也存在一些缺点。
问题描述 编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数N也是由用户输入的,最多不会超过20。...然后程序将对这个数组进行统计,把出现次数最多的那个数组元素值打印出来。如果有两个元素值出现的次数相同,即并列第一,那么只打印比较小的那个值。 ...输出格式:输出只有一行,即出现次数最多的那个元素值。
人工神经网络背景 KNN是我们最常见的聚类算法,但是因为神经网络技术的发展出现了很多神经网络架构的聚类算法,例如 一种称为HNSW的ANN算法与sklearn的KNN相比,具有380倍的速度,同时提供了...Small World graphs) 一些其他算法 作为数据科学家,我我们这里将制定一个数据驱动型决策来决定那种算法适合我们的数据。...在本文中,我将演示一种数据驱动的方法,通过使用出色的an-benchmarks GitHub存储库,确定哪种ANN算法是自定义数据集的最佳选择。 ?...下图是通过使用距离度量在glove-100 数据集上运行ANN基准而得到的图形。在此数据集上,scann算法在任何给定的Recall中具有最高的每秒查询数,因此在该数据集上具有最佳的算法。 ?...总结 总之,通过使用ann-benchmarks,并编写一些自定义的代码,我们可以 在自己的自定义数据集上测试大量的ANN算法,以缩小筛选范围,以进一步探索。
k-NN是一种基本的分类和回归方法,用于分类时,算法思路较简单:通过计算不同特征之间的距离方法来得到最近的k个训练实例,根据k个实例的类别采用多数表决等方式进行预测。...二、基本要素 距离度量:特征空间中的两个实例的距离是两个实例点相似程度的反映,k-NN模型通常使用的是欧氏距离,但也可以选用其它距离,如曼哈顿距离、切比雪夫距离和闵可夫斯基距离等。...k=1的情况被称为最近邻算法。如果选择较大k值,相当于用较大领域中的训练实例进行预测,此时容易出现一些较远的训练实例(不相似的)也会对预测起作用,k值得增大就意味着整体模型变简单了。...k=N时会出现模型将输入实例简单的预测属于训练实例中最多的类。因此在应用中,k一般取较小的数值,通常采取交叉验证法选取最优的k值。...---如果dist小于maxdist,则将该训练样本作为K-最近邻样本 step.5---重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完 step.6---统计K-最近邻样本中每个类标号出现的次数
转载自Tarjan算法 LCA问题(Least Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两个顶点u和...一 LCA问题 LCA问题的一般形式:给定一棵有根树,给出若干个查询,每个查询要求指定节点u和v的最近公共祖先。 LCA问题有两类解决思路: 在线算法,每次读入一个查询,处理这个查询,给出答案。...其中关于集合的操作都是使用并查集高效完成。 算法的复杂度为,O(n)搜索所有节点,搜索每个节点时会遍历这个节点相关的所有查询。如果总的查询个数为m,则总的复杂度为O(n+m)。...三 算法实现 接下来提供一个完整算法实现。 使用邻接表方法存储一棵有根树。并通过记录节点入度的方法找出有根树的根,方便后续处理。...:1 5和4的最近公共祖先为:1 5和7的最近公共祖先为:5 1和4的最近公共祖先为:1 6和1的最近公共祖先为:0 3和4的最近公共祖先为:0 0和5的最近公共祖先为:0 */ }
算法训练 出现次数最多的整数 时间限制:1.0s 内存限制:512.0MB 问题描述 编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数...N也是由用户输入的,最多不会超过20。...然后程序将对这个数组进行统计,把出现次数最多的那个数组元素值打印出来。如果有两个元素值出现的次数相同,即并列第一,那么只打印比较小的那个值。 ...输出格式:输出只有一行,即出现次数最多的那个元素值。
给你每一个项目开始的时间和结束的时间(给你一个数 组,里面是一个个具体的项目),你来安排宣讲的日程,要求会议室进行的宣讲的场次最多。返回这个最多的宣讲场次。
K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。...KNN算法的工作过程如下:1.计算待分类样本与训练集中所有样本之间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离等。2.选择K个距离最近的样本,即K个最近邻。...3.对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。4.对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。...需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。...同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。
领取专属 10元无门槛券
手把手带您无忧上云