首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

K近邻算法

概述 随机选择K个中心,在每一次迭代中,先为每个点确定其最近的中心,这一步称为集群分配(cluster assignment),然后计算每个中所有点的中心点,将该类的中心移动到中心点,这一步称为中心移动...(move centroid),得到这k个中心的新位置,进行下一次迭代,直到每个中心点正确分布在每个的中心。...算法的输入有两个参数:中心的数量K和一系列训练集X={x1,x2,…,xm},过程如图所示: ?...伪代码如下: image.png K近邻与K近邻分类 KNN是非监督学习,KNN分类是监督学习 KNN是迭代的过程,KNN分类不需要迭代 关于随机初始化 一个推荐的随机初始化的方法: image.png...根据业务需要,这是很多情况下的方法,在运行KNN之前心里就有了想要分成多少的需求。

43520

实践之K近邻算法实现红酒

前言 K近邻算法是一种用于分类和回归的非参数统计方法,通过计算样本与训练样本的距离,找出最接近的k个样本进行投票来确定分类结果。算法的基本要素包括K值、距离度量和分类决策规则。...分类问题 预测算法(分类)的流程包括以下步骤:首先在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;然后统计集合N中每一样本的个数,最终的分类结果为argmax(最大的对应的...)那个。...此外,可以考虑样本的权重,即每个样本有不同的投票权重,这种方法称为带权重的k近邻算法,是一种变种的k近邻算法。...2.3 距离的定义 总结 MindSpore实现了KNN算法,用于在wine数据集上解决3分问题。该算法能有效地根据酒的13种属性判断出酒的品种。

9010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    -层次(谱系算法

    简介 ---- 层次(Hierarchical Clustreing)又称谱系,通过在不同层次上对数据集进行划分,形成树形的结构。...算法步骤: 计算间距离矩阵 初始化n个,将每个样本视为一 在距离矩阵中选择最小的距离,合并这两个为新 计算新到其他的距离,得到新的距离矩阵 重复3-4步,直至最后合并为一个 首先介绍距离矩阵的计算...,然后第4步有不同的算法来定义新到其他的距离,包括:最短距离法、最长距离法、平均法、重心法等。...根据上述步骤绘制谱系图,横坐标就是每个,纵坐标表示合并两个时的值: 根据谱系图,如果要为2,从上往下看首次出现了2个分支的地方,即将样品0分为一,样品1、2分为另一。...data, 'centroid') dendrogram(z4) plt.show() 使用sklearn库中的AgglomerativeClustering函数 使用linkage参数定义合并算法

    5K40

    算法 ---- 大数据算法综述

    文章大纲 简介 算法的分类 相似性度量方法 大数据算法 spark 中的算法 算法对比 性能对比 效果对比 参考文献 简介 随着数据量的迅速增加如何对大规模数据进行有效的成为挑战性的研究课题...,面向大数据的算法对传统金融行业的股票投资分析、 互联网金融行业中的客户细分等金融应用领域具有重要价值, 本文对已有的大数据算法,以及普通算法做一个简单介绍 聚类分析是伴随着统计学、计算机学与人工智能等领域科学的发展而逐步发展起来的...然而,算法又有了长足的发展与进步。 算法的分类 相似性度量方法 3)曼哈顿距离(Manhattan Distance)。...大数据算法 spark 中的算法 http://spark.apache.org/docs/latest/ml-clustering.html spark 支持的算法有以下几个: K-means...大数据算法综述[J]. 计算机科学(S1期):380-383. [1]伍育红. 算法综述[J]. 计算机科学, 2015, 42(0z1):491-499,524.

    1.4K30

    机器学习(7)——算法算法

    算法 前面介绍的集中算法都是属于有监督机器学习方法,这章和前面不同,介绍无监督学习算法,也就是算法。...我们对数据进行的思想不同可以设计不同的算法,本章主要谈论三种思想以及该思想下的三种算法。...下面介绍一种最常用的一种最基本的算法—K-Means算法 K-Means算法 K- means算法,也称为K-平均或者K-均值,是一种使用广泛的基础的算法,一般作为掌握算法的第一个算法。...k- Means算法 要求:给定较多数据,来比较两种算法速度,且用刚学到的评估算法对,这两种算法进行评估。...非凸数据集进行 本章小结 本章主要介绍了中的一种最常见的算法—K-Means算法以及其优化算法是一种无监督学习的方法。

    3.6K70

    算法之DBSCAN

    DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 是一种基于密度的算法,基于密度的寻找被低密度区域分离的高密度区域...若某一点,从任一核心地点出发都是密度不可达的,则称该点为噪声点 DBSCAN 算法实现如下图: ? 当出现奇葩数据时,K-Means 无法正常,而 DBSCAN 完全无问题 ?...、间距差相差很大时参数密度阈值minPts和邻域r参数选取困难 对于高维数据,容易产生“维数灾难”(算法基于欧式距离的通病) DBSCAN Python 实现 # coding=utf...其他参数: metric: 度量方式,默认为欧式距离,还有metric=‘precomputed’(稀疏半径邻域图) algorithm: 近邻算法求解方式,有四种:‘auto’, ‘ball_tree...’, ‘kd_tree’, ‘brute’ leaf_size: 叶的大小,在使用BallTree or cKDTree近邻算法时候会需要这个参数 n_jobs: 使用CPU格式,-1代表全开 返回值

    3K30

    算法算法

    小编邀请您,先思考: 1 有哪些算法可以?各自有什么特点? 2 算法的效果如何评价?...方法的分类 主要分为层次化算法,划分式算法,基于密度的算法,基于网格的算法,基于模型的算法等。...3.1 层次化算法 又称树算法,透过一种层次架构方式,反复将数据进行分裂或聚合。...在经典算法失效的情况下,核算法仍能够得到正确的。代表算法有SVDD算法,SVC算法。...谱算法建立在图论中的谱图理论基础上,其本质是将问题转化为图的最优划分问题,是一种点对算法。 ? 算法简要分类架构图 常用算法特点对比表 ▼ ?

    1.7K130

    算法之层次

    层次(Hierarchical Clustering)是算法的一种,通过计算不同类别的相似度创建一个有层次的嵌套的树。...层次怎么算 层次分为自底向上和自顶向下两种,这里仅采用scikit-learn中自底向上层次法。...将相邻最近的两组归为同一组 重复第二步,直到合并成为一个组,结束 过程的散点图变化一下,就是我们要的层次图 层次 Python 实现 import numpy as np from sklearn.cluster...import AgglomerativeClustering data = np.random.rand(100, 3) #生成一个随机数据,样本大小为100, 特征数为3 #假如我要构造一个数为...3的器 estimator = AgglomerativeClustering(n_clusters=3)#构造器 estimator.fit(data) print(estimator.labels

    2.8K40

    算法

    算法算法属于无监督学习,没有给出分类,通过相似度得到种类。 主要会讲四种:Kmeans均值,层次,DBSCAN,谱。 再讲算法前先讲一下几种衡量相似度的方法: 1.欧氏距离: ?...而Kmeans就是一直改进方法:改进了选择K初始值的方法,假设已经选取了n个初始中心(0<n<K),则在选取第n+1个中心时:距离当前n个中心越远的点会有更高的概率被选为第n+1个中心。...: 层次分为两种,一种是凝聚层次,一种是分裂层次。...密度概念: ? image ? image 算法流程: 1.如果一个点的领域包括了多于m个点的对象,那么就把他作为一个核心对象。...谱是一种基于拉普拉斯矩阵的特征向量的算法

    1.9K20

    Meanshift,算法

    如此重复下去,meanshift算法可以收敛到概率密度最大得地方。也就是稠密的地方。...如果 >ε, 则利用(3)计算x,返回1. 2.meanshift在图像上的: 真正大牛的人就能创造算法,例如像meanshift,em这个样的算法,这样的创新才能推动整个学科的发展。...还有的人就是把算法运用的实际的运用中,推动整个工业进步,也就是技术的进步。下面介绍meashift算法怎样运用到图像上的核跟踪。...所以怎样来定义点的概率密度,这才是关键的。 如果我们就算点x的概率密度,采用的方法如下:以x为圆心,以h为半径。落在球内的点位xi 定义二个模式规则。...利用meanshift对其,可得到左下角的图。 图片 图片 图片 图片 ---- 如有问题,可在线讨论。

    44110

    层次算法

    层次是一种构建层次结构的算法。该算法从分配给它们自己的集群的所有数据点开始。然后将两个最近的集群合并到同一个集群中。最后,当只剩下一个集群时,该算法终止。...数的最佳选择是树状图中垂直线的数量,该水平线可以垂直横穿最大距离而不与相交。 1....简介 层次(Hierarchical clustering)是一种常见的算法,它将数据点逐步地合并成越来越大的簇,直到达到某个停止条件。...平均链接:两个之间的距离定义为一个中的每个点与另一个中的每个点之间的平均距离。 Centroid-linkage:找到1的质心和2的质心,然后在合并前计算两者之间的距离。...正如已经说过的,树状图包含了层次算法的记忆,因此只需查看树状图就可以知道是如何形成的。 4.

    1.2K10

    算法简述

    K-MEANS 算法 K-MEANS 评估结果与选择K MapReduce GMM 算法 初始化 过拟合 K-MEANS比较 LDA LDA和clustering的区别 数学基础 四种分布 共轭分布...三种方法。...样本点划分到最近中心的那一 [图片] 根据重新划分的样本点,计算每个的新中心 [图片] K-MEANS++ 改进了初始样本中心的选择方法。...从数据中随机选择样本点作为第一个中心 对每个样本点,计算到最近的中心的距离 根据第二步计算的样本点到最近的中心的距离,成概率地选择新的中心 重复2-3直到获得K个中心 这样做的优点有...GMM相比K-MEANS优点如下: 软间隔划分,样本点可以属于多个类别,可以计算属于各个类别的概率 K-MEANS只记录了中心,GMM记录了的形状 K-MEANS的区域是超球形的不可以重叠,

    2K80

    AI - 算法

    感谢大家的观看 算法概念 算法是一种无监督学习方法,用于将数据集中的对象划分为若干个簇,使得同一个簇内的对象之间具有较高的相似性,而不同簇的对象之间具有较大的差异性。...算法的应用场景: 商业选址:通过分析用户的地理位置信息,算法可以帮助企业确定新店铺的最佳位置,以最大化覆盖潜在客户。...文档:在文本挖掘中,算法可以用于自动对文档进行分类,将内容相似的文档归为一,便于信息的检索和管理。...资源优化:在物流和供应链管理中,算法可以帮助优化资源的分配,例如确定最佳的仓库位置或货物配送路线。 算法因其能够在无监督的环境中发现数据的内在结构和模式,而在各个领域都有广泛的应用。...5,init='k-means++'表示使用k-means++算法进行初始化 # random_state=42用于设置随机种子以确保结果的可重复性 # K-means算法开始随机选取数据集中K个点作为中心

    15110

    机器学习--基础的最常用的算法

    基于划分算法(partition clustering) K-means:是一种典型的划分算法,它用一个的中心来代表一个簇,即在迭代过程中选择的点不一定是中的一个点,该算法只能处理数值型数据...结果容易解释,一般效果还算不错; 缺点:对异常值非常敏感,需要提前确定好k值 ? 其他划分算法如下: ?...基于层次算法 CURE:采用抽样技术先对数据集D随机抽取样本,再采用分区技术对样本进行分区,然后对每个分区局部,最后对局部进行全局。...其他基于层次算法如下: ?...优点:簇的形状没有偏倚,不需要输入要划分的个数。 缺点:DBSCAN算法对参数Eps及Minpts非常敏感,且这两个参数很难确定。 ? 其他基于密度算法如下: ?

    92840

    算法总结

    -------------------------- 算法的种类: 基于划分算法(partition clustering) k-means: 是一种典型的划分算法,它用一个的中心来代表一个簇...PCM: 模糊集合理论引入聚类分析中并提出了PCM模糊算法 基于层次算法: CURE: 采用抽样技术先对数据集D随机抽取样本,再采用分区技术对样本进行分区,然后对每个分区局部,最后对局部进行全局...ROCK: 也采用了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响 CHEMALOEN(变色龙算法): 首先由数据集构造成一个K-最近邻图Gk ,再通过一个图的划分算法将图Gk...DBSCAN算法中邻域的概念,以适应空间对象的特点 DBLASD: OPTICS: OPTICS算法结合了的自动性和交互性,先生成的次序,可以对不同的设置不同的参数,来得到用户满意的结果...因此如何解决这个问题成为当前的一个研究热点,有学者提出将不同的思想进行融合以形成新的算法,从而综合利用不同聚算法的优点,在一次过程中综合利用多种方法,能够有效的缓解这个问题。

    1.5K40
    领券