http://blog.csdn.net/nevasun/article/details/6977511
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
题目链接:https://leetcode-cn.com/problems/longest-increasing-subsequence/
大家好,我是捡田螺的小男孩。收集了腾讯常考的十道算法题(真题)。在金三银四,希望对大家有帮助呀。
本题刚开始其实我是按照双指针做的, 当时看到这道题想都没想 直接通过滑动窗口的方式确定最大的递增子序列。 结果看来用例才发现他找的是子序列, 不是连续子序列……
如:求 2 7 1 5 6 4 3 8 9 的最长上升子序列。我们定义d(i) (i∈[1,n])来表示前i个数以A[i]结尾的最长上升子序列长度。
这是 LeetCode 上的 「354. 俄罗斯套娃信封问题」 ,难度为 「困难」。
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK<= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
题目:Alice 有 n 枚糖,其中第 i 枚糖的类型为 candyType[i] 。Alice 注意到她的体重正在增长,所以前去拜访了一位医生。
作为一名程序员,掌握各种算法可以帮助我们解决各种复杂的问题,提高代码的效率和性能,同时也是面试中常被考察的重要内容之一。无论是开发新的软件应用、优化现有的算法逻辑还是解决各类计算问题,算法都是不可或缺的工具。因此,程序员必须掌握一系列常用的算法,以确保能够高效地编写出稳定、功能强大的软件。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。
动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。 动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
在 精读《DOM diff 原理》 一文中,我们提到了 Vue 使用了一种贪心 + 二分的算法求出最长上升子序列,但并没有深究这个算法的原理,因此特别开辟一章详细说明。
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …,aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中序列和最大为18,为子序列(1, 3, 5, 9)的和.
有一个长为n的数列a0, a1, ……, a(n-1)。请求出这个序列中最长的上升子序列的长度。上升子序列指的是对于任意的i<j都满足ai<aj的子序列,该问题被称为最长上升子序列(LIS,Longest Increasing Subsequence)的著名问题。
谈到字符串问题,不得不提的就是 KMP 算法,它是用来解决字符串查找的问题,可以在一个字符串(S)中查找一个子串(W)出现的位置。KMP 算法把字符匹配的时间复杂度缩小到 O(m+n) ,而空间复杂度也只有O(m)。因为“暴力搜索”的方法会反复回溯主串,导致效率低下,而KMP算法可以利用已经部分匹配这个有效信息,保持主串上的指针不回溯,通过修改子串的指针,让模式串尽量地移动到有效的位置。
一天,小凯同学震惊的发现,自己无内的PM2.5指标是有规律的!小凯采样了PM2.5数值,发现PM2.5数值以小时为周期循环,即任意时刻的PM2.5总是和一小时前相等!他的室友小文同学提出了这样一个问题,在t小时内的所有采样点中,选取若干采样点的数值,能否找到一个PM2.5不曾下降过的序列?这个序列最长是多少?
基础算法篇——双指针算法 本次我们介绍基础算法中的双指针算法,我们会从下面几个角度来介绍: 双指针简介 双指针基本使用 最长连续不重复字符列 数组元素的目标和 判断子序列 双指针简介 首先我们先来简单介绍一下双指针: 双指针算法就是采用两个变量作为指针放在数组的某个部位来实现复杂度简化 我们来介绍一下双指针的使用场景: 双指针通常用于简化双for循环的场景,将复杂度为O(N^2)变为O(N) 双指针可以用于单个序列中,例如我们之前的快速排序所使用的双指针算法 双指针可以用于多个序列中,例如我们之前的归并排序
给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列。(最长上升连续子序列可以定义为从右到左或从左到右的序列。) 样例 给定 [5, 4, 2, 1, 3], 其最长上升连续子序列(LICS)为 [5, 4, 2, 1], 返回 4. 给定 [5, 1, 2, 3, 4], 其最长上升连续子序列(LICS)为 [1, 2, 3, 4], 返回 4. 思路:两边遍历,利用动态规划思路,每当找到一个子序列比上一次找到的大,就存储当前的子序列,注意最后遍历结束的时候还要比较一次,因为一般写的程序是发现下降的时候来检查上升序列是否是最大的,如果序列本身在最后没有下降,不检查肯定是不合理的,一开始就错在这里了,到vs里调试了一下看了每步的结果才弄对,两次遍历: code:
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。 例如,[3, 6, 2, 7] 是数组[0, 3, 1, 6, 2, 2, 7] 的子序列。
作者:我是哪吒 链接:https://juejin.cn/post/7142493275084029960
东京奥运会圆满收官!当然我自己也将迎来留学前的最后准备,所以更新速度可能还是会比较慢……但还好,大部分的内容都已经在之前写的差不多了,也希望最后这几篇我也能够尽快更完,当然也希望大家可以谅解~
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
题目链接:https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence/
本周我们结束了股票系列的最后一道题目,然后开始了子序列系列,这个系列和背包系列一样,都是动规解决的经典问题。
申请等长的临时数组 arr,用于保存每个位置上对应的最长上升序列长度,则计算 arr[i] 时,需要遍历前 i 个位置,取 nums 值小于 nums[i] 的最大序列长度加一,即为 arr[i] 的值。
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax 2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给 出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先 x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
扭动序列是指数组中的相邻两个元素的差保证严格的正负交替,如[1,7,4,9,2,5]数组中相邻两个元素的差为6,-3,5,-7,3,满足扭动序列的要求。现在要求从一个数组中,找到长度最长的扭动子序列,并返回其长度。
给定一些标记了宽度和高度的信封,宽度和高度以整数对形式 (w, h) 出现。当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样。
题目:在二维平面上,有一个机器人从原点(0, 0) 开始。给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束。
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4987 Solved: 1732 [Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax 2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求
但是双指针算法虽然是看起来是双重循环,但是实际上每个指针移动的次数是不超过O(n)的,两个指针的总次数不超过O(2n)。将之前的朴素算法优化到O(n)。
有两种算法复杂度为O(n*logn)和O(n^2)。在上述算法中,若使用朴素的顺序查找在D1..Dlen查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来算法相比没有任何进步。但是由于D的特点(2),在D中查找时,可以使用二分查找高效地完成,则整个算法时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D在算法结束后记录的并不是一个符合题意的最长上升子序列!算法还可以扩展到整个最长子序列系列问题。 有两种算法复杂度为O(n*logn)和O(n^2) O(n^2)算法分析如下 (a[1]…a[n] 存的都是输入的数) 1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列; 2、若从a[n-1]开始查找,则存在下面的两种可能性: (1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n]. (2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。 3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的: 在a[t+1],a[t+2],…a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。 4、为算法上的需要,定义一个数组: d:array [1..n,1..3] of integer; d[t,1]表示a[t] d[t,2]表示从i位置到达n的最长不下降子序列的长度 d[t,3]表示从i位置开始最长不下降子序列的下一个位置 最长不下降子序列的O(n*logn)算法 先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, …, len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, …, t – 1, 且A[j] < A[t])。 现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足 (1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y] 此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢? 很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] … A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。 再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。 注意到D[]的两个特点: (1) D[k]的值是在整个计算过程中是单调不上升的。 (2) D[]的值是有序的,即D[1] < D[2] < D[3] < … < D[n]。 利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A[t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有D[j] < A[t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[t]。最后,len即为所要求的最长上升子序列的长度。 在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列! 这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。
动态规划(二维最长递增子序列问题) 将一维问题简单扩展到二维,即两维同时升序(18%beat,约1400ms) class Solution { public: static bool cmp(vector<int>& a, vector<int>& b) { if (a[0] == b[0]) return a[1] < b[1]; return a[0] < b[0]; } int maxEnvelopes(vector<vector<int>
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
链接 给定一个未经排序的整数数组,找到最长且连续的的递增序列。 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3。 尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为5和7在原数组里被4隔开。 示例 2: 输入: [2,2,2,2,2] 输出: 1 解释: 最长连续递增序列是 [2], 长度为1。 注意 注意:数组长度不会超过10000。 golang语言版 func findLengthOfLCIS(n
若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xi,j。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
一个各公司都喜欢拿来做面试笔试题的经典动态规划问题,互联网上也有很多文章对该问题进行讨论,但是我觉得对该问题的最关键的地方,这些讨论似乎都解释的不很清楚,让人心中不快,所以自己想彻底的搞一搞这个问题,希望能够将这个问题的细节之处都能够说清楚。
新的一周,又到了上班的日子了,由于新型肺炎病毒还在持续,有些人可能收到通知还是在家里远程办公,但是有些人可能公司就要求回去公司上班了,在这里还是要提醒大家,无论是在家也好,在公司也好都要做好防护工作。
在 Go 语言中设计一个 O(n^2) 时间复杂度的算法来求一个 n 个数的序列的最长单调递增子序列(Longest Increasing Subsequence, LIS)可以使用动态规划的方法。以下是一个实现示例:
要设计一个 O(nlgn) 时间的算法来求一个 n 个数的序列的最长单调递增子序列,我们可以使用动态规划结合二分查找的方法,也就是经典的“最长递增子序列”(Longest Increasing Subsequence, LIS)问题。
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3。 尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为5和7在原数组里被4隔开。 示例 2:
设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。
动态规划是一种常见的算法设计方法,主要用于优化多阶段决策问题的求解过程,具有高效性和可靠性。其基本思想是将待求解问题分解成若干个子问题,逐个求解这些子问题,并保存每个子问题的结果,避免重复计算,以便快速地求出原问题的解。动态规划主要应用于最优化问题,如最长公共子序列、背包问题等。
二叉树根节点所在层下标为 0 ,根的子节点所在层下标为 1 ,根的孙节点所在层下标为 2 ,依此类推。 偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增 奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减 给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true ,否则返回 false
前面三篇文章已经为大家介绍了利用动态规划算法解决问题的思路以及相关的代码实现,最为核心的就是第一步利用数学中函数的思想来建立模型,然后求解问题。这三个问题构建的数学函数都有一个共同的特征就是所构建的函数都是一元函数即y = f(x)。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
「最长特殊序列」定义如下:该序列为某字符串独有的最长子序列(即不能是其他字符串的子序列)。
领取专属 10元无门槛券
手把手带您无忧上云