首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    397. 最长上升连续子序列

    给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列。(最长上升连续子序列可以定义为从右到左或从左到右的序列。) 样例 给定 [5, 4, 2, 1, 3], 其最长上升连续子序列(LICS)为 [5, 4, 2, 1], 返回 4. 给定 [5, 1, 2, 3, 4], 其最长上升连续子序列(LICS)为 [1, 2, 3, 4], 返回 4. 思路:两边遍历,利用动态规划思路,每当找到一个子序列比上一次找到的大,就存储当前的子序列,注意最后遍历结束的时候还要比较一次,因为一般写的程序是发现下降的时候来检查上升序列是否是最大的,如果序列本身在最后没有下降,不检查肯定是不合理的,一开始就错在这里了,到vs里调试了一下看了每步的结果才弄对,两次遍历: code:

    02

    最长上升子序列 LIS算法实现[通俗易懂]

    有两种算法复杂度为O(n*logn)和O(n^2)。在上述算法中,若使用朴素的顺序查找在D1..Dlen查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来算法相比没有任何进步。但是由于D的特点(2),在D中查找时,可以使用二分查找高效地完成,则整个算法时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D在算法结束后记录的并不是一个符合题意的最长上升子序列!算法还可以扩展到整个最长子序列系列问题。  有两种算法复杂度为O(n*logn)和O(n^2) O(n^2)算法分析如下   (a[1]…a[n] 存的都是输入的数)   1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;   2、若从a[n-1]开始查找,则存在下面的两种可能性:   (1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n].   (2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。   3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:   在a[t+1],a[t+2],…a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。   4、为算法上的需要,定义一个数组:   d:array [1..n,1..3] of integer;   d[t,1]表示a[t]   d[t,2]表示从i位置到达n的最长不下降子序列的长度   d[t,3]表示从i位置开始最长不下降子序列的下一个位置 最长不下降子序列的O(n*logn)算法   先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, …, len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, …, t – 1, 且A[j] < A[t])。   现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足   (1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y]   此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?   很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] … A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。   再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。   注意到D[]的两个特点:   (1) D[k]的值是在整个计算过程中是单调不上升的。   (2) D[]的值是有序的,即D[1] < D[2] < D[3] < … < D[n]。   利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A[t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有D[j] < A[t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[t]。最后,len即为所要求的最长上升子序列的长度。   在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!   这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

    02
    领券