首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

软件打包,有没有更好方法?!

,这也让我对于软件打包这事有了新认识。...大多数软件并非如此 在开始讨论之前,我们先明确解释几个要用到术语: 软件包: 软件原子单元,包括库、应用程序等等。...依赖项: 软件包在构建及 / 或运行时所依赖另一软件包。通常使用接口版本来指定,但也可以在 build 版本中指定。 版本集: 由已知能够良好协同运行软件包 build 版本所建立集合。...有没有更好方法? 下面咱们捋一援理想构建系统基本要求: 可稳定复现构建:如果远程系统能够成功构建,那我们本地系统也应该可以。...Gentoo、NixPkgs、Guix、AUR 软件包维护者们各自举起自己神器,想让整个软件世界臣服在自己脚下。

22250

基于keras手写数字识别_数字识别

大家好,又见面了,我是你们朋友全栈君。...一、概述 手写数字识别通常作为第一个深度学习在计算机视觉方面应用示例,Mnist数据集在这当中也被广泛采用,可用于进行训练及模型性能测试; 模型输入: 32*32手写字体图片,这些手写字体包含0~...9数字,也就是相当于10个类别的图片 模型输出: 分类结果,0~9之间一个数 下面通过多层感知器模型以及卷积神经网络方式进行实现 二、基于多层感知器手写数字识别 多层感知器模型如下,其具有一层影藏层...x_test, y_test) # 从Keras导入Mnist数据集 (x_train, y_train), (x_validation, y_validation) = loadData() # 显示4张手写数字图片...=>..] - ETA: 0s 10000/10000 [==============================] - 1s 112us/step MLP: 98.07% 三、基于卷积神经网络手写数字识别

1.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数字识别

    上篇内容最后一个案例代码,其实来自官方手写数字识别案例教程,我自己基于里面的内容自己删减了一些。...这里主要讲一下里面的数据集,sklearn自带了很多数据集,在安装包data里面,就有手写数字识别数据集。 虽说是数字识别,不过这个数据集里面并没有实际图片。...这里数字识别核心可以分为下面几步: 第一步:创建分类器模型 简单理解,可以看作一个映射函数,传入一个数据,就可以返回一个结果给你。...,不过识别前都会通过测试数据测试一下,先看看准确率怎么样,确定效果还不错,就可以用来测试没有见过数字图片了。...2.从图片文件夹中将所有数字图片读取出来 这里只是做了数字图片读取,所以只能识别数字。 3.定义一个单张图片匹配方法。

    1.6K10

    哪个加密软件更实用?有没有破解不了加密软件

    经常遇到有人问有没有破解不了加密软件,作为加密行业多年摸爬滚打的小编,掏心和大家聊一聊: 没有破解不了加密,只是说难度高低而已,就像矛和盾一样,我们所能做就是提升加密难度和加密技术延伸,增加破解的人力物力和财力还有时间成本...视频加密软件主要是针对FLV、F4V、MP4这类视频文件进行加密,防止非授权用户播放。加密后文件别的播放软件无法播放;只能通过专用播放器进行播放。...基于小编经验,教程课件加密要求可以选择方法有很多种。比如定制APP,实现向学员分发课件时,增加对播放器加密,依靠该播放器硬件识别功能,保证仅对唯一指定学员独立使用。...比如可以自动禁止和屏蔽各类录屏软件运行。还有就是支持水印、字幕、播放间断问答等。多种方式全平台综合加密情况下破解成本就不可预期了。 此外题主列举基本上都是公开标准方案,通病就是:标准统一、公开。...如果作为技术人员想去破解,还是有机会。比如微软DRM树大招风,破解软件网上会有提供;hls这种,如果我伪装成自己是浏览器,你总要给我解密秘钥,我就自然可以获取后将视频解密开来。

    2.4K30

    mnist手写数字识别代码(knn手写数字识别)

    MNIST 手写数字识别模型建立与优化 本篇主要内容有: TensorFlow 处理MNIST数据集基本操作 建立一个基础识别模型 介绍 S o f t m a x Softmax Softmax...回归以及交叉熵等 MNIST是一个很有名手写数字识别数据集(基本可以算是“Hello World”级别的了吧),我们要了解情况是,对于每张图片,存储方式是一个 28 * 28 矩阵,但是我们在导入数据进行使用时候会自动展平成...,下面建立一个简单模型来识别这些数字。..., 784]) # 输出结果是对于每一张图输出是 1*10 向量,例如 [1, 0, 0, 0...] # 只有一个数字是1 所在索引表示预测数据 y = tf.placeholder(tf.float32...argmax()也就是比较是索引 索引才体现了预测是哪个数字 # 并且 softmax()函数输出不是[1, 0, 0...]

    2.3K30

    opencv +数字识别

    现在很多场景需要使用数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源tesseract 识别....以上几种ocr 识别比较,最后选择了opencv 方式进行ocr 数字识别,下面讲解通过ocr识别的基本流程和算法. opencv 数字识别流程及算法解析 要通过opencv 进行数字识别离不开训练库支持...,需要对目标图片进行大量训练,才能做到精准识别出目标数字;下面我会分别讲解图片训练过程及识别的过程. opencv 识别算法原理 1.比如下面一张图片,需要从中识别出正确数字,需要对图片进行灰度...原图 灰度化图 二值化图 寻找轮廓 识别结果图 以上就是简单图片进行灰度化、二值化、寻找数字轮廓得到识别结果(==这是基于我之前训练过数字模型下得到识别结果==) 有些图片比较赋值...“.”好分类,用于训练“.”图片,这样就可以识别出小数点数字支持. -2 这个分类主要是其他一些无关紧要图片,也就是不是数字和点都归为这一类中.

    2.5K20

    有没有一些冷门且小众软件

    有一些冷门且小众软件,可能会给您带来新体验和发现。以下是一些可能符合您要求例子: Turtl - 一个开源笔记应用程序,专注于隐私和安全。...Joplin - 一款开源笔记和待办事项应用,支持端到端加密和跨平台同步。 qBittorrent - 一种优秀开源BitTorrent客户端,功能强大且易于使用。...SpaceSniffer - 一个直观磁盘空间分析工具,可以帮助您找出大文件和占用空间较多文件夹。 Taskwarrior - 一个灵活命令行任务管理工具,允许您轻松管理和组织待办事项。...Hugin - 一个用于拼接照片开源图像处理软件,特别适用于全景图拼接。 Zim - 一个桌面Wiki应用,让您可以轻松创建和组织笔记、文档和链接。...这只是一小部分例子,还有许多其他值得探索冷门软件。希望这些提名能为您提供一些启发!

    10210

    基于tensorflow手写数字识别

    一、前言 本文主要介绍了tensorflow手写数字识别相关理论,包括卷积,池化,全连接,梯度下降法。...二、手写数字识别相关理论 2.1 手写数字识别运算方法 图1 识别过程就像图片中那样,经过多次卷积和池化(又叫子采样),最后全连接就运算完成了。...2.2 卷积 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视一种高效识别方法。...另一种是平均值池化,把选中区域中平均值作为抽样后值。 这样做是为了后面全连接时候减少连接数。...2.4 全连接 图5 左边是没有没有进行卷积全连接,假设图片是1000*1000,然后用1M神经元去感知,最后需要10^12个权值作为参数。

    1.6K70

    基于FPGA数字识别

    基于FPGA数字识别三 作者:OpenS_Lee 1 背景知识 在《基于FPGA数字识别一》我们在三种数字识别方法中选择了数字特征识别算法,完成了屏幕固定位置数字识别。...图1 基于固定标线数字识别 在《基于FPGA数字识别二》中我们在数字识别的前端增加了移动目标的追踪模块,从而完成了屏幕范围内0-9任意位置识别。...这为多个数字识别或是车牌识别打下基础。 ? 图3 水平垂直投影分割字符 在《基于FPGA数字识别三》中我们将完成多个数字同时识别,且不限于多个数字在屏幕上位置大小。...2 基于FPGA数字识别三 在《基于FPGA数字识别三》中我们利用了前边数字识别一和二以及垂直投影法。这样对之前模块复用也是FPGA设计核心思想。 ?...图6 放出标线多个数字识别调试 ? 图7 放出标线5,6,7 ? 图8 追踪边界5,6,7识别 至此数字识别完成,再次基础上我们还可以对简单图像识别或增加语音系统完成对识别数字播报。

    84220

    基于tensorflowMNIST数字识别

    一、MNIST数据集介绍MNIST是一个非常有名手写体数字识别数据集,在很多资料中,这个数据集都会作为深度学习入门样例。...二、基于tensorflowMNIST手写数字识别import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data...这个集合元素就是所有没有指定 # trainable=False参数。...于是得到结果是长度为batch# 一维数组,这个一维数组中值就表示了每一个样例对应数字识别结果。tf.equal# 判断两个张量每一维是否相等,如果相等返回True,否则返回False。...手写数字识别问题解决程序一共分为三部分,第一个是mnist_inference.py,它定义了前向传播过程以及神经网络中参数,第二个是mnist_train.py,它定义了神经网络训练过程。

    2.9K11

    手机端有没有好用图片识别文字工具值得推荐?

    大家好,又见面了,我是你们朋友全栈君。 图片转文字,用到就是OCR识别技术,针对网络上复杂字体实现精确识别功能,经常用于社交、电商、学习等场景。...传统将图片识别文字方式选择手动书写,随着AI智能技术应用,以OCR智能识别工具由于使用简单、转写效率高逐渐代替传统手动书写。下面给大家分享三款超好用图片转文字工具,看看你喜欢有没有上榜。...1、微信提取文字 微信基本上是现在手机中必装软件,很多人仅用微信用来日常聊天,实际上很多小功能也是非常好用。今天给大家介绍微信提取文字方法。 第一步:打开好友对话框,找到需要识别的图片。...另外软件毫秒级相应上传文件,快速将图片转转化为文本,在图片文字清晰情况下,生成文本准确率超过95%。...知意字稿针对转写端口做了详细优化,导出文件可以选择txt、word、xls格式,适用于数字、手写、表格、电子文档等各种图片类型,满足用户不同图片转写需求。

    3.8K10

    Softmax 识别手写数字

    TensorFlow 入门(二):Softmax 识别手写数字 MNIST是一个非常简单机器视觉数据集,如下图所示,它由几万张28像素x28像素手写数字组成,这些图片只包含灰度值信息。...我们任务就是对这些手写数字图片进行分类,转成0~9一共十类。 ?...,请关闭杀毒软件,以防误报。...我们可以用一个数字数组来表示这张图片: ? 我们把这个数组展开成一个向量,长度是 28x28 = 784。如何展开这个数组(数字顺序)不重要,只要保持各个图片采用相同方式展开。...这里手写数字识别为多分类问题,因此我们采用Softmax Regression模型来处理。关于Softmax,可以参看这里。你也可以认为它是二分类问题Sigmoid函数推广。

    2.3K40

    Pytorch 基于LeNet手写数字识别

    本文内容:Pytorch 基于LeNet手写数字识别 更多内容请见 Python sklearn实现SVM鸢尾花分类 Python sklearn实现K-means鸢尾花聚类 Pytorch 基于...AlexNet服饰识别(使用Fashion-MNIST数据集) ---- 本文目录 介绍 1.导入相关库 2.定义 LeNet-5 网络结构 3.下载并配置数据集和加载器 4.定义损失函数和优化器 5...是美国国家标准与技术研究院收集整理大型手写数字数据库,包含60,000个示例训练集以及10,000个示例测试集。...LeNet 是由 Yann Lecun 提出一种经典卷积神经网络,是现代卷积神经网络起源之一。本文使用 LeNet 为 LeNet-5。...: 包含错误预测结果: ---- 8.加载现有模型(可选) 本文训练函数会保存每次训练模型,下一次预测可以不调用训练函数,而是直接加载已经保存模型来进行预测: # 加载保存模型

    78520

    基于OpenCV数字识别系统

    数字分割 如何确定图像中数字有多种方法,但是我提出了使用简单图像阈值法来尝试查找数字方法。...3.扔掉任何不是正方形或高矩形东西。 4.使轮廓与某些长宽比匹配。LCD显示屏中十个数字中有九个数字长宽比类似于下面的蓝色框高光之一。该规则例外是数字“ 1”,其长宽比略有不同。...由于数字大小应相同,并且在相同Y上对齐,因此我们可以丢弃它认为是数字任何轮廓,但不能像其他轮廓那样将其对齐和调整大小。...优化 一旦确定了数字隔离和预测两个目标,就需要对算法进行优化,以预测泵新图像上数字。...然后,我用图像中期望数字来命名每个文件,并用小数点“ A”表示。应用程序可以加载该目录中每个图像并预测数字,然后将其与文件名中数字进行比较以确定是否匹配。

    1.3K20

    keras数字图像识别

    aistudio地址: https://aistudio.baidu.com/aistudio/projectdetail/1484526 keras数字图像识别 一、加载数据 MNIST数据集预加载到...然后使用pyplot显示其中一个数组图片 因为每次都需要重新下载,可以先手动下载到本地,然后加载文件 wget https://storage.googleapis.com/tensorflow/tf-keras-datasets...print(train_images.shape) print(train_labels) print(test_images.shape) print(test_labels) # 25 * 25grid...一个二维数组,数字5转成0. 0. 0. 0. 0. 1. 0. 0. 0. 0....0.07070968300104141 test_acc 0.9790999889373779 六、预测模型 使用predict()方法进行预测,返回样本属于每一个类别的概率 使用numpy.argmax()方法找到样本以最大概率所属类别作为样本预测标签

    1K00

    Pytorch实现简单数字识别(上)

    使用深度学习神经网络对数字识别,大体需要4个步骤:①读取数据。②建立模型。③训练。④测试、验证。 其基本流程示意图如下: ? 上图由左至右依次为输入层、神经层a、神经层b、输出层。...plt.xlabel('step') # 输入x轴名称 plt.ylabel('value') # 输入y轴名称 plt.show() 定义第二个工具:用图像表示识别结果...def plot_result_image(img, label, name): # 以图像方式输出识别结果 fig = plt.figure() # 先输出空白图像...for i in range(9): # 以迭代方式,一次性输出9个图像 plt.subplot(3, 3, i+1) # 3 * 3 图片输出样式...import torch from torch import nn # nn用于完成神经网络间相关操作 from torch.nn import functional as F # F为神经网络运算常用计算包

    1.5K70
    领券