性能测试为保证软件质量起到重要作用,对于交易量较大的应用系统,性能测试更是一个必不可少的环节。
OpenTSDB 是一种基于 HBase 编写的分布式、可扩展的时间序列数据库。官方文档这样描述:OpenTSDB is a distributed, scalable Time Series Database (TSDB) written on top of HBase; 翻译过来就是,基于Hbase的分布式的,可伸缩的时间序列数据库,和上面的意思基本相同。 主要用途,就是做监控系统;譬如收集大规模集群(包括网络设备、操作系统、应用程序)的监控数据并进行存储,查询。 存储到OpenTSDB的数据,是以me
关键业务的考核指标,重点关注业务价值评价的标准指标,电商类的下单量、支付量等,股票交易类关注买入、卖出以及账户中资金和持有股票的资金的关系等指标。这部分最好是和团队内BA一起确定,建立一套基于业务价值的监控指标。
上一章节,我们讲了Elasticsearch集群的监控,除了腾讯云自己平台提供了丰富的监控参数外,Kibana Monitor也提供了丰富的监控特性。作为信息管理人员我们有必要去结合两者的监控去管理我们的集群服务。那么,我们知道,监控其实是一种被动式的管理,而且需要维护者时时去管理调试。那么能不能在监控到系统有问题的时候提前告警通知呢??答案是肯定的。腾讯云 ES 提供一些关键指标的配置告警功能,配置告警可帮助您及时发现集群问题并进行处理。可以毫不夸张的说集群告警在信息管理中是非常重要的一部分,那么,本文为您介绍通过控制台配置告警的操作。
一句话描述:Panel 是一个移动端 APP,提供云服务器以及容器管理服务,用户可以快速地通过 Panel 创建,启动,停止,销毁云服务器和容器。
原文:https://blog.csdn.net/u010521062/article/details/115908166
主动模式:客户端主动上报数据到服务器端,对服务器的开销较小,适合大规模的监控环境。
使用 top 指令,服务器中 CPU 和 内存的使用情况,-H 可以按 CPU 使用率降序,-M 内存使用率降序。排除其他进程占用过高的硬件资源,对 Java 服务造成影响。
我们开发的软件服务需要在服务器上运行,所以服务器性能代表了软件的性能上限,因此服务器性能调优是个十分重要的环节,然而大部分同学对服务器性能调优关注的较少,今天从3个部分对服务器性能调优进行介绍,分别是:服务器配置选择,服务器负载分析,服务器内核参数调优。
原文https://blog.csdn.net/u010521062/article/details/115908166
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
前几篇我们介绍了怎么对nGrinder改造成阿里云PTS类似的样子,也给大家举例演示了怎么利用nGrinder测试接口性能,那测试结果出来后,就需要对测试结果进行分析,找出性能瓶颈点,今天给大家介绍怎么分析nGrinder的测试结果。
介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具,以web的可视化方式展示系统及应用程序的实时运行状态(包括cpu、内存、硬盘输入/输出、网络等linux性能的数据)。Netdata的web前端响应很快,而且不需要Flash插件。UI很整洁,保持着 Netdata 应有的特性。具体内容文末会简单介绍。
画架构图是为了知道请求是从哪里到哪里,做性能分析一定先画个图,脑子里就会有路径的概念了。
作为一枚测试,或多或少都做过or听说过性能测试。说到性能测试,第一印象可能是高大上,因为它涉及到评估系统的性能、稳定性和可靠性。确实,性能测试水很深,如果玩得比较溜就能发展成性能测试专家、架构师级别。
sysfs把连接在系统上的设备和总线组织成为一个分级的文件,它们可以由用户空间存取,向用户空间导出内核的数据结构Q以及它们的属性。sysfs的一个目的就是展示设备驱动模型中各组件的层次关系。
大家有没这种感觉,不论甲方还是乙方,拿到一套数据库我们很难快速的知道他的配置,数据库状态以及性能状态
某项目压测后发现qps达标,服务器cpu和内存占用均在70%以下,然而mysql服务的内存占用高达100%,且并没有因为压测而产生波动。
第3章 服务器性能剖析 优化的第一步应该是测量时间花在哪里。 对测试结果统计之后,对结果进行排序,把重要的任务排在前面。 如果优化的成本大于收益,就应该停止优化。 平均值在很多时候都隐藏了我们正在需要关注的地方。 虽然监控程序本身可能会拖慢程序,但是它对优化程序的贡献,是远远大于的其拖累的。 mysql慢查询日志可以帮助我们找到那些查询慢的语句。 利用pt-query-digest分析慢查询报告。 使用SHOW PROFILE 可以详细查看每条语句耗费时间的地方。 导致性能低下的原因有几种:资源被过度使用,
在当今的高科技环境下,生产环境服务器的性能问题可能是一个复杂且棘手的问题。当服务器变慢时,可能会对企业的运营产生重大影响,包括客户满意度下降,工作效率降低,甚至可能导致整个系统崩溃。为了解决这些问题,我们需要深入了解生产环境服务器变慢的原因,并掌握有效的诊断和处理方法。
到了年底果然都不太平,最近又收到了运维报警:表示有些服务器负载非常高,让我们定位问题。
要导出MySQL日志,您可以配置MySQL以记录查询、慢查询和与复制相关的信息。您可以使用Filebeat或Fluentd等工具来收集并发送这些日志进行分析。
Hi,大家好。随着行业的快速发展,软件系统越来越复杂,功能越来越多,测试人员除了需要保证基本的功能测试质量,性能也随越来越受到人们的关注。但是一提到性能测试,很多人就直接连想到Loadrunner,认为LR就等于性能测试。LR只是性能测试的一个工具,但性能测试不仅仅是LR,本文就给大家逐步开展Web端性能测试。
这次分享是腾讯后端面经,面试接近 1 小时,问了非常多的问题,涵盖Linux、数据库、C++、操作系统、计算机网络。
Node_exporter 用于采集Linux系统指标数据数据,prometheus官方提供的exporter,除node_exporter外,官方还提供consul,memcached,haproxy,mysqld等exporter。
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第二篇,在《prometheus实战之一:用ansible部署》一文咱们部署了prometheus服务,并且在应用服务器部署了node_exporter,整体情况如下图 目前,prometheus已经可以通过node_exporter从应用服务器取得监控数据,本篇就来学习如何使用这些监控数据来展现应用
一台运行了好久的服务器CPU使用率达到100%,脑海中第一个想法就是中病毒了,于是开始了我的杀毒之旅。
通常来说,作为一个Linux的SA,很有必要掌握一个专门的系统监控工具,以便能随时了解系统资源的占用情况。下面就介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具,以web的可视化方式展示系统及应用程序的实时运行状态(包括cpu、内存、硬盘输入/输出、网络等linux性能的数据)。Netdata的web前端响应很快,而且不需要Flash插件。 UI很整洁,保持着 Netdata 应有的特性。第一眼看上去,你能够看到很多图表,幸运的是绝大多数常用的图表数据(像 CPU,R
很多新手都在使用 Memcached 或者 Redis 扩展来加速服务器数据库的运行性能,其实这些扩展对于小博客的服务器来说有时候是个负担和安全隐患的,具体可以参考【理智冷静的使用 Memcached 或者 Redis】一文,那么不使用优化扩展我们如何来提升 MySQL 或 MariaDB 数据库的运行性能呢?
服务器监控工具对于IT基础架构性能、可视化和系统稳定至关重要。合适的工具能够帮助系统管理员面对服务器故障、应用缓慢、停机、内存泄露和配置依赖等挑战。
很多公司都使用界面化的监控工具,很酷炫,这说明,监控这块我们几乎都会接触到,大家是有想法的,其次在不同的目的下,选择不同的工具有着不同的目的,今天这篇文章我就给大家介绍酷炫的图形化监控小军刀netdata的使用。
一般,我们做性能测试的目标是,在大用户量、数据量的超负荷下,获得服务器运行时的相关数据,从而分析出系统瓶颈,提高系统的稳定性。
尤其redis这类敏感的纯内存、高并发和低延时的服务,一套完善的监控告警方案,是精细化运营的前提。
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
1、CPU,如果存在大量的计算,他们会长时间不间断的占用CPU资源,导致其他资源无法争夺到CPU而响应缓慢,从而带来系统性能问题,例如频繁的FullGC,以及多线程造成的上下文频繁的切换,都会导致CPU繁忙,一般情况下CPU使用率<75%比较合适。 2、内存,Java内存一般是通过jvm内存进行分配的,主要是用jvm中堆内存来存储Java创建的对象。内存的读写速度非常快,但是内存空间又是有限的,当内存空间被占满,对象无法回收时,就会导致内存溢出或内存泄漏。 3、磁盘I/O,磁盘的存储空间要比内存存储空间大很多,但是磁盘的读写速度比内存慢,虽然现在引入SSD固态硬盘,但是还是无法跟内存速度相比。 4、网络,带宽的大小,会对传输数据有很大影响,当并发量增加时,网络很容易就会成为瓶颈。 5、异常,Java程序,抛出异常,要对异常进行捕获,这个过程要消耗性能,如果在高并发的情况下,持续进行异常处理,系统的性能会受影响。 6、数据库,数据库的操作一般涉及磁盘I/O的读写,大量的数据库读写操作,会导致磁盘I/O性能瓶颈,进而导致数据库操作延迟。 7、当在并发编程的时候,经常会用多线程操作同一个资源,这个时候为了保证数据的原子性,就要使用到锁,锁的使用会带来上下文切换,从而带来性能开销,在JDK1.6之后新增了偏向锁、自旋锁、轻量级锁、锁粗化、锁消除。
某公司新开发了一款大IP手游。上线之后不久,发现几十个人上线之后服务器就崩溃了。一开始还能用大量预算来购买服务器用以支撑,但几天之后由于宣传火爆,随着用户的增多,这才发现单纯增加服务器的成本实在太高了。玩家开始逐渐骂服务器垃圾,各种掉线、卡顿、crash。本想领先竞品抢先进入市场,结果收获的却是满怀期待玩家们的流失。为什么!因为没有做压力测试!
在当今数字时代,软件系统在我们的生活和工作中发挥着越来越重要的作用。我们需要确保这些系统能够在高负载、高并发的情况下稳定运行,为用户提供良好的体验。为了实现这一目标,我们需要关注系统性能监控指标,洞察系统运行的关键脉搏。本文将从指标分类、指标详细说明等方面介绍系统性能监控指标的相关知识,帮助你更好地理解和应用这些关键数据。
文章旨在通过对 MongoDB 监控指标的梳理和架构的分解,帮助广大的腾讯云 MongoDB 用户更好的通过监控告警及时发现业务异常,实时监控数据趋势。内容将会包括三个部分:
在实际的性能测试中,会遇到各种各样的问题,比如 TPS 压不上去等,导致这种现象的原因有很多,测试人员应配合开发人员进行分析,尽快找出瓶颈所在。
另外Elasticsearch入门,我强烈推荐ElasticSearch新手搭建手册和这篇优秀的REST API设计指南 给你,这两个指南都是非常想尽的入门手册。
之前做的压测性能标准、产品说明书的性能需求部分、运营人员提出的性能指标、通过生产环境换算出的性能指标等
性能压测场景 1、本次需要对查询接口进行100、200、500并发逐渐递增方式进行性能压测 2、在压测过程中,100、200并发响应时间、吞吐量、报错率为0,满足性能需求 3、当并发用户为500时,报错率达到22%,此时经过监控服务器,发现服务器cpu、内存、硬盘、网络、应用服务gc情况未出现异常,满足指标 4、经过排查,本次应用服务使用的是Dubbo服务,通过修改jmeter断言,返回响应结果提示threadpool is exhausted ,detail msg:Thread poo
对被测系统不断施加压力,直到性能指标超过预期或某项资源使用达到饱和,以验证系统的处理极限,为系统性能调优提供依据;
其他关键设置项:并发用户数、pacing、log(一般设置为关闭)、ThinkTime(一般设置为关闭)、Multithreading(分process和thread方式,一般选择thread,部分脚本不支持thread时选择process)。
这是系列文章的第五篇,主要探讨:Elasticsearch 出现 “429 reject 报错",怎么办?
伴随着突发流量、系统变更或代码腐化等因素,性能退化随时会发生。如在周年庆大促期间由于访问量暴涨导致请求超时无法下单;应用发布变更后,页面频繁卡顿导致客诉上升;线上系统运行一段时间后,突然发生OOM或连接打满拒绝访问。
精彩早知道 作者概述 什么是性能调优?(what) 为什么需要性能调优?(why) 什么时候需要性能调优?(when) 什么地方需要性能调优?(where) 什么人来进行性能调优?(who) 怎么样进行性能调优?(How) 总结 硬件配置:CUP Xeon E5620 x 2 8核心, 内存 16G , 硬盘 RAID 10,操作系统: CentOS 6.4 x86_64(64位)。 概述 在这篇博文中,我不想用一些抽象的概念去说性能调优的问题,只想用最通俗的语言尽量来准确的表达我的想法。 由于本人小平有
领取专属 10元无门槛券
手把手带您无忧上云