CPU使用率(%processor time),在80%±5%范围内波动为宜。过低,则服务器CPU利用率不高;过高,则CPU可能成为系统的处理瓶颈。
关键业务的考核指标,重点关注业务价值评价的标准指标,电商类的下单量、支付量等,股票交易类关注买入、卖出以及账户中资金和持有股票的资金的关系等指标。这部分最好是和团队内BA一起确定,建立一套基于业务价值的监控指标。
最新将生产环境的服务器版本统一升级了一下,其中有一台(4H/8G)近两天天天CPU使用率报警(阀值>95%,探测周期60s,触发频率6次),而且load acerage也居高不下,检查了各个系统应用软件的资源使用都没有问题,也将一些可能导致CPU使用率高的软件stop掉,报警依旧。
本文总结接口性能测试中,常见的性能指标概念,查看及通用通过标准 注: 本文只考虑B/S架构
尤其redis这类敏感的纯内存、高并发和低延时的服务,一套完善的监控告警方案,是精细化运营的前提。
简介 云数据库 Redis(TencentDB for Redis)是由腾讯云提供的兼容 Redis 协议的缓存数据库,具备高可用、高可靠、高弹性等特征。云数据库 Redis 服务兼容 Redis 2.8、Redis 4.0、Redis 5.0 版本协议,提供标准和集群两大架构版本。最大支持 4TB 的存储容量,千万级的并发请求,可满足业务在缓存、存储、计算等不同场景中的需求。 云数据库 Redis 的优势: 主从热备:提供主从热备,宕机自动监测,自动容灾。 数据备份:标准和集群架构数据持久化存储,可提供
我们开发的软件服务需要在服务器上运行,所以服务器性能代表了软件的性能上限,因此服务器性能调优是个十分重要的环节,然而大部分同学对服务器性能调优关注的较少,今天从3个部分对服务器性能调优进行介绍,分别是:服务器配置选择,服务器负载分析,服务器内核参数调优。
在报警群里看到 XXX 服务所在的服务器负载很高, 4 核 16G 的配置,CPU 使用率 >90%
ORACLE数据库系统是美国ORACLE公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器(CLIENT/SERVER)或B/S体系结构的数据库之一。Oracle旗下的Oracle数据库监控软件是企事业单位中最重要的监控需要,通过对Oracle数据库的监控,可以全面了解Oracle的运行状态、数据库响应情况、数据库表空用度情况,从而方便Oracle数据库性能优化。
性能相关的数据指标 通过Redis-cli命令行界面访问到Redis服务器,然后使用info命令获取所有与Redis服务相关的信息。通过这些信息来分析文章后面提到的一些性能指标。 info命令输出的
阅读目录: 性能相关的数据指标 内存使用率 命令处理总数 延迟时间 内存碎片率 回收key 总结 性能相关的数据指标 通过Redis-cli命令行界面访问到Redis服务器,然后使用info命令获取所
监控服务器CPU、内存、磁盘、I/O等信息,首先需要安装node_exporter。node_exporter的作用是用于机器系统数据收集。
一台运行了好久的服务器CPU使用率达到100%,脑海中第一个想法就是中病毒了,于是开始了我的杀毒之旅。
为了快速定位并解决性能问题,这里选择5个关键性的数据指标,它包含了大多数人在使用Redis上会经常碰到的性能问题
常见的端口转发程序有socat、Brook、nginx、rinetd、iptables等,大部分已经在博客做过介绍,有兴趣的同学可参考我之前的文章。
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
某公司新开发了一款大IP手游。上线之后不久,发现几十个人上线之后服务器就崩溃了。一开始还能用大量预算来购买服务器用以支撑,但几天之后由于宣传火爆,随着用户的增多,这才发现单纯增加服务器的成本实在太高了。玩家开始逐渐骂服务器垃圾,各种掉线、卡顿、crash。本想领先竞品抢先进入市场,结果收获的却是满怀期待玩家们的流失。为什么!因为没有做压力测试!
前面介绍了如何运用Python获取Oracle数据库的信息以及将数据存入MySQL数据库中
最近计划对于之前的短链接服务进行升级改造。在改造前,对于常见 Web 语言,如 Java、PHP、Python、Node、Ruby、Go和服务工具 Nginx、Caddy、Traefik 做了简单的对比分析。
在本系列的第 1 部分中,我们讨论了如何使用专用游戏服务器,将其与 Docker 打包,然后在Kubernetes 上托管和管理它,这是一个很好的开始。然而,由于我们的 Kubernetes 集群通常是固定大小的,我们可能会耗尽所有可用容量来运行我们需要的所有游戏服务器容器,以匹配所有想玩我们的游戏的玩家——这将是一件非常糟糕的事情。
在集群升级发生了Leader选举和切换,当前时期集群处于不稳定,客户端连接的节点有倾斜。有两个节点x.x.x.88和x.x.x.15内存使⽤率过⾼,需要评估其能否扛得住。由于未全部完成升级,除了节点x.x.x.122和节点x.x.x16高配机(32C64G)外,其他均为低配机(4C8G)。
glances是一个基于python语言开发,可以为linux或者UNIX性能提供监视和分析性能数据的功能。glances在用户的终端上显示重要的系统信息,并动态的进行更新,让管理员实时掌握系统资源的使用情况,而动态监控并不会消耗大量的系统资源,比如CPU资源,通常消耗小于2%,glances默认每两秒更新一次数据。同时glances还可以将相同的数据捕获到一个文件,便于以后对报告进行分析和图形绘制,支持的文件格式有.csv电子表格格式和和html格式。
案例是一个泰国网站的生产环境(请脑补一句“萨瓦迪卡”,为了叙述方便,下文中均以"萨瓦迪卡"指代这个网站。)“萨瓦迪卡”是一个 采用 Wordpress + MySQL搭建的应用。这个遗留系统已经工作了五年。客户已经把在其它 VPS 上平移到 AWS 上。平移(lift and shift)是说原样复制,而迁移(migration)还要进行改造。而客户唯一发挥 AWS 优势的一点就是用了一个配置很高的 EC2 虚拟机 —— m4.4xlarge。这样一台配置的虚拟机有 16 个虚拟 CPU,64 GiB 的内存,以及 2000 Mbps 的网络带宽,最高 3000 IOPS 的 200GiB 的块存储设备(也就是硬盘)。
当我们在写程序的时候,时常对上一步执行是否成功如何判断苦恼,当我们今天学习了if就可以解决你的苦恼。if语句在我们程序中就是用来做判断的,以后大家不管学习什么语言,以后只要涉及到判断的部分,大家就可以直接拿if来使用,不同的语言之间的if只是语法不同,原理是相同的。
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况。这个命令是我查看Linux/Unix最喜爱的命令,一个是Linux/Unix都支持,二是相比top,我可以看到整个机器的CPU,内存,IO的使用情况,而不是单单看到各个进程的CPU使用率和内存使用率(使用场景不一样)。 选项 -a:显示活动内页; -f:显示启动后创建的进程总数; -m:显示slab信息; -n:头信息仅显示一次; -s:以表格方式显示事件计数器和内存状态; -d:报告磁盘状态; -p:显示指定的硬盘分区状态; -S:输出信息的单位。 vmstat 3 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 320 42188 167332 1534368 0 0 4 7 1 0 0 0 99 0 0 0 0 320 42188 167332 1534392 0 0 0 0 1002 39 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 19 1002 44 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 0 0 320 42188 167336 1534392 0 0 0 0 1002 41 0 0 100 0 0 一般vmstat工具的使用是通过两个数字参数来完成的,第一个参数是采样的时间间隔数,单位是秒,第二个参数是采样的次数 r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。 b 表示阻塞的进程,这个不多说,进程阻塞,大家懂的。 swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。 free 空闲的物理内存的大小,我的机器内存总共8G,剩余3415M。 buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存,我本机大概占用300多M cache cache直接用来记忆我们打开的文件,给文件做缓冲,我本机大概占用300多M(这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高 程序执行的性能,当程序使用内存时,buffer/cached会很快地被使用。) si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。我的机器内存充裕,一切正常。 so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。 bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒 bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。 in 每秒CPU的中断次数,包括时间中断 cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源
性能测试为保证软件质量起到重要作用,对于交易量较大的应用系统,性能测试更是一个必不可少的环节。
由于项目的需要,需要做一个简单监控服务器的CPU利用率、CPU负载、硬盘使用率、内存利用率和服务器的各个端口的开启情况的程序,并把结果通知到监控平台,如果出现异常,监控平台打电话或者发短信通知给具体的运维人员
本文档是完成***压力测试的指导性文件。本文档给出了对测试需求、测试环境、测试过程及测试结果的总体要求, 这也是本测试项目中其他文档编写及结果评价的基础。
脚本 #!/bin/sh ############################## ## 名称: MonitorES.sh ## 描述: 主机利用率超过阈值 判断top占用内存的进程 匹配ES
OpenTSDB 是一种基于 HBase 编写的分布式、可扩展的时间序列数据库。官方文档这样描述:OpenTSDB is a distributed, scalable Time Series Database (TSDB) written on top of HBase; 翻译过来就是,基于Hbase的分布式的,可伸缩的时间序列数据库,和上面的意思基本相同。 主要用途,就是做监控系统;譬如收集大规模集群(包括网络设备、操作系统、应用程序)的监控数据并进行存储,查询。 存储到OpenTSDB的数据,是以me
前不久,看到了明哥写的如何用Python发送警告通知到企业微信,想起来之前写过用Pytho发送指定格式数据到钉钉的服务,本文将之前的代码重构下,变成一个:利用Python监控服务器数据,然后有异常就通过钉钉发送给用户。
市面上有很多开源的监控告警工具,提供了丰富的、可视化的监控指标,以及告警能力,而对于服务器维度,抛开业务指标外,我们关注的无外乎cpu使用率、内存使用率和磁盘使用率等是否超过了我们既定的安全阈值,如果超过了则推送告警通知,来引起研发人员的关注,从而采取相应的应对措施。
Zabbix默认使用Zabbix agent监控操作系统,其内置的监控项可以满足系统大部分的指标监控,因此,在完成Zabbix agent的安装后,只需在前端页面配置并关联相应的系统监控模板就可以了。如果内置监控项不能满足监控需求,则可以通过system. run[command, <mode>]监控项让Zabbix agent运行想要的命令来获取监控数据。
上节我们讲了如何安装paramiko,这节我们讲如何使用paramiko连接服务器
psutil(Python system and process utilities)是python的系统监控及进程的管理的工具,是一个功能很强大的跨平台的系统管理库。 官方文档(https://pythonhosted.org/psutil/)
最近,烦心事有点多,博客也像是进入了便秘期。虽然还远远不到说放弃的地步,但总有一种挤不出牙膏的郁闷感。很怀念前几个月的冲劲和激情,一天都能存好几篇优质草稿。 看来,张戈博客是首次进入瓶颈阶段了!没办法
性能问题的本质就是系统资源已经到达瓶颈,但请求的处理还不够快,无法支撑更多的请求。 性能分析实际上就是找出应用或系统的瓶颈,设法去避免或缓解它们。
Node_exporter 用于采集Linux系统指标数据数据,prometheus官方提供的exporter,除node_exporter外,官方还提供consul,memcached,haproxy,mysqld等exporter。
CPU密集型,也叫计算密集型,一般是指服务器的硬盘、内存硬件性能相对CPU好很多,或者使用率低很多。系统运行CPU读写I/O(硬盘/内存)时可以在很短的时间内完成,几乎没有阻塞(等待I/O的实时间)时间,而CPU一直有大量运算要处理,因此CPU负载长期过高。
性能问题的本质就是系统资源已经到达瓶颈,但请求的处理还不够快,无法支撑更多的请求。性能分析实际上就是找出应用或系统的瓶颈,设法去避免或缓解它们。
Part1Linux性能优化 1性能优化 性能指标 高并发和响应快对应着性能优化的两个核心指标:吞吐和延时
在日常运维工作中,大部分企业都会搭建自己的可视化监控大屏,但是对于小型企业或者是个人玩家来说这样做的成本和难度会大大提高,下面我就分享一个Shell脚本监控Linux服务器的CPU、磁盘、内存。
伴随着突发流量、系统变更或代码腐化等因素,性能退化随时会发生。如在周年庆大促期间由于访问量暴涨导致请求超时无法下单;应用发布变更后,页面频繁卡顿导致客诉上升;线上系统运行一段时间后,突然发生OOM或连接打满拒绝访问。
在日常运维工作中,会碰到服务器带宽飙升致使网站异常情况。作为运维人员,我们要能非常清楚地了解到服务器网卡的流量情况,观察到网卡的流量是由哪些程序在占用着。 今天介绍一款linux下查看服务器网卡流量占用情况的工具:Nethogs,来自github上的开源工具。 它不依赖内核中的模块。当我们的服务器网络异常时,可以通过运行nethogs程序来检测是那个程序占用了大量带宽。节省了查找时间。 Nethogs安装: 方法一:在epel源中可以直接yum安装 [root@dev src]# yum install -
画架构图是为了知道请求是从哪里到哪里,做性能分析一定先画个图,脑子里就会有路径的概念了。
vmstat 命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,MEM内存使用,VMSwap虚拟内存交换情况,IO读写情况。
领取专属 10元无门槛券
手把手带您无忧上云